zero is the answer
Chat with our AI personalities
Zero.
Yes, if the dot product of two nonzero vectors v1 and v2 is nonzero, then this tells us that v1 is PERPENDICULAR to v2. :)
The dot product of two perpendicular vectors is 0. a⋅b = |ab|cos θ where: |a| = length of vector a |b| = length of vector b θ = the angle between the vectors. If the vectors are perpendicular, θ = π/2 radians → cos θ = cos(π/2) = 0 → a⋅b = |a| × |b| × 0 = 0 ----------------------------------------------------------------------------- The dot product can also be calculated for vectors of n dimensions as the sum of the products of the corresponding elements: a = (a1, a2, ..., an) b = (b1, b2, ..., bn) a⋅b = Σ ar × br for r = 1, 2 , ..., n With perpendicular vectors this sum is zero,
The dot-product of two vectors tells about the angle between them. If the dot-product is positive, then the angle between the two vectors is between 0 and 90 degrees. When the dot-product is negative, the angle is more than 90 degrees. Therefore, the dot-product can be any value (positive, negative, or zero). For example, the dot product of the vectors and is -1*1+1*0+1*0 = -1 which is negative.
It depends on what the dot product is meant to be equal to.