Want this question answered?
y = mx + b where m is the slope and b is the y-intercept.
The formula for finding the slope of the line is this: m = (Y2-Y1)/(X2-X1)
Assuming that the point is located at (1,1) then the equation is: y = -3x + 4 We know this by multiplying the slope by the x of the point given, and finding the difference between this value, and the y value of the point. 1 - (-3) is 4, hence the +4 in our equation.
The equation of slope intercept form is y=mx+b. This would be used in finding the slope of an object and is the most efficient way to date in doing so.
-- Measure how far the slope rises in 100-ft of horizontal distance.-- That number is the percent of slope, or the "grade".-- If you want the angle of the slope, divide the number by 100, and look upthe "arctangent" of the answer in a table or on a calculator.
y = mx + b where m is the slope and b is the y-intercept.
The answer depends on what information you have.
It is not defined.
(-6,-5) (4,4)
Alpental is a valley and ski slope in the valley within the United States. It is located in the eastern section of King County in the state of Washington.
In a mathmatical sense, slope is important for finding velocity or a change in behavior of something. The slope correlates to a positive or negatve depending on the angle.
The formula for finding the slope of the line is this: m = (Y2-Y1)/(X2-X1)
You can make a formula of finding the slope of an area buy first finding the equation of the line using: y - y1 = m ( x - x1 ).
The slope of a line is the same thing as the rate of change between two variables in a linear relationship.
If the curve is on the xy-plane, finding an expression for dy/dx will give you the slope of a curve at a point.
This is the easiest form of this question, called the slope-intercept form. y = mx + b m is slope, and b is the y-intercept. The slope is 5, and the y-intercept is 2. ■
Assuming that the point is located at (1,1) then the equation is: y = -3x + 4 We know this by multiplying the slope by the x of the point given, and finding the difference between this value, and the y value of the point. 1 - (-3) is 4, hence the +4 in our equation.