In a standard distribution, the first quartile (Q1) represents the 25th percentile of the data. This means that 25% of the data falls below Q1, and consequently, 75% of the data falls above Q1. Therefore, 75% of the data is above Q1.
coefficient of quartile deviation is = (q3-q1)/(q3+q1)
(q3-q1)/2
The data is divided into four equal parts by quartiles. The first quartile (Q1) marks the 25th percentile, the second quartile (Q2) is the median or 50th percentile, and the third quartile (Q3) represents the 75th percentile. These quartiles help to understand the distribution of the data by segmenting it into four intervals, each containing approximately 25% of the observations.
To find Q1 (the first quartile) of a data set, first, arrange the data in ascending order. Then, identify the position of Q1 using the formula ( Q1 = \frac{(n + 1)}{4} ), where ( n ) is the number of data points. If the position is a whole number, Q1 is the value at that position; if it's not, Q1 is the average of the values at the closest whole numbers surrounding that position.
In a standard distribution, the first quartile (Q1) represents the 25th percentile of the data. This means that 25% of the data falls below Q1, and consequently, 75% of the data falls above Q1. Therefore, 75% of the data is above Q1.
coefficient of quartile deviation: (Q3-Q1)/(Q3+Q1)
A quartile divides a distribution into four equal parts, each containing 25% of the data. The first quartile (Q1) represents the value below which 25% of the data fall, the second quartile (Q2) is the median, and the third quartile (Q3) is the value below which 75% of the data fall.
Step 1: Find the upper quartile, Q3.Step 2: Find the lower quartile: Q1.Step 3: Calculate IQR = Q3 - Q1.Step 1: Find the upper quartile, Q3.Step 2: Find the lower quartile: Q1.Step 3: Calculate IQR = Q3 - Q1.Step 1: Find the upper quartile, Q3.Step 2: Find the lower quartile: Q1.Step 3: Calculate IQR = Q3 - Q1.Step 1: Find the upper quartile, Q3.Step 2: Find the lower quartile: Q1.Step 3: Calculate IQR = Q3 - Q1.
coefficient of quartile deviation is = (q3-q1)/(q3+q1)
first quartile (Q1) : Total number of term(N)/4 = Nth term third quartile (Q3): 3 x (N)/4th term
Q3-q1
50%
(q3-q1)/2
6,6,9,5,8,9,6,7,8,8,6,5,5,6,8,5,7,7,8,6,5,9,10,14,5,8,5,8,10,10,7,7,7,8,6,6,7,5,7,8,8,5,6,6,7,7,7,6,6,9
242 is the first quartile. 347 is the third quartile.
26.5 Apex Learing