In a standard distribution, the first quartile (Q1) represents the 25th percentile of the data. This means that 25% of the data falls below Q1, and consequently, 75% of the data falls above Q1. Therefore, 75% of the data is above Q1.
To solve for the quartile deviation, first calculate the first quartile (Q1) and the third quartile (Q3) of your data set. The quartile deviation is then found using the formula: ( \text{Quartile Deviation} = \frac{Q3 - Q1}{2} ). This value represents the spread of the middle 50% of your data, providing a measure of variability.
coefficient of quartile deviation is = (q3-q1)/(q3+q1)
A quartile is a statistical term that divides a dataset into four equal parts, each representing a quarter of the data. The three main quartiles are the first quartile (Q1), which marks the 25th percentile, the second quartile (Q2) or median, which represents the 50th percentile, and the third quartile (Q3), which corresponds to the 75th percentile. These quartiles help to summarize and analyze the distribution of data points.
(q3-q1)/2
In a standard distribution, the first quartile (Q1) represents the 25th percentile of the data. This means that 25% of the data falls below Q1, and consequently, 75% of the data falls above Q1. Therefore, 75% of the data is above Q1.
coefficient of quartile deviation: (Q3-Q1)/(Q3+Q1)
A quartile divides a distribution into four equal parts, each containing 25% of the data. The first quartile (Q1) represents the value below which 25% of the data fall, the second quartile (Q2) is the median, and the third quartile (Q3) is the value below which 75% of the data fall.
Step 1: Find the upper quartile, Q3.Step 2: Find the lower quartile: Q1.Step 3: Calculate IQR = Q3 - Q1.Step 1: Find the upper quartile, Q3.Step 2: Find the lower quartile: Q1.Step 3: Calculate IQR = Q3 - Q1.Step 1: Find the upper quartile, Q3.Step 2: Find the lower quartile: Q1.Step 3: Calculate IQR = Q3 - Q1.Step 1: Find the upper quartile, Q3.Step 2: Find the lower quartile: Q1.Step 3: Calculate IQR = Q3 - Q1.
coefficient of quartile deviation is = (q3-q1)/(q3+q1)
first quartile (Q1) : Total number of term(N)/4 = Nth term third quartile (Q3): 3 x (N)/4th term
Q3-q1
50%
(q3-q1)/2
6,6,9,5,8,9,6,7,8,8,6,5,5,6,8,5,7,7,8,6,5,9,10,14,5,8,5,8,10,10,7,7,7,8,6,6,7,5,7,8,8,5,6,6,7,7,7,6,6,9
242 is the first quartile. 347 is the third quartile.
26.5 Apex Learing