A 90 degree rotation is a quarter of a turn.
To find the image of the point (4, 3) after a -90-degree rotation (which is equivalent to a 90-degree clockwise rotation), you can use the rotation formula: (x', y') = (y, -x). Applying this to the point (4, 3), the new coordinates become (3, -4). Therefore, the image of the point (4, 3) after a -90-degree rotation is (3, -4).
To find the image of the point (4, 3) after a 90-degree rotation counterclockwise about the origin, you can use the transformation formula for rotation. The new coordinates will be (-y, x), which means the image of the point (4, 3) will be (-3, 4).
follow this formula (x,y)->(-y,x)
90
To find the image of the point (1, -6) after a 270-degree counterclockwise rotation about the origin, we can use the rotation formula. A 270-degree counterclockwise rotation is equivalent to a 90-degree clockwise rotation. The coordinates transform as follows: (x, y) becomes (y, -x). Therefore, the image of (1, -6) is (-6, -1).
To find the image of the point (4, 3) after a -90-degree rotation (which is equivalent to a 90-degree clockwise rotation), you can use the rotation formula: (x', y') = (y, -x). Applying this to the point (4, 3), the new coordinates become (3, -4). Therefore, the image of the point (4, 3) after a -90-degree rotation is (3, -4).
To find the image of the point (4, 3) after a 90-degree rotation counterclockwise about the origin, you can use the transformation formula for rotation. The new coordinates will be (-y, x), which means the image of the point (4, 3) will be (-3, 4).
follow this formula (x,y)->(-y,x)
90
plz awnser this
To find the image of the point (1, -6) after a 270-degree counterclockwise rotation about the origin, we can use the rotation formula. A 270-degree counterclockwise rotation is equivalent to a 90-degree clockwise rotation. The coordinates transform as follows: (x, y) becomes (y, -x). Therefore, the image of (1, -6) is (-6, -1).
Yes, a 270-degree clockwise rotation is the same as a 90-degree counterclockwise rotation. When you rotate an object 270 degrees clockwise, you effectively move it 90 degrees in the opposite direction, which is counterclockwise. Both rotations will result in the same final orientation of the object.
90 degrees
To find the image of the point (3, 5) after a rotation of -270 degrees (which is equivalent to a 90-degree rotation clockwise), you can use the rotation formula. The new coordinates will be (y, -x), resulting in the point (5, -3). Thus, the image of the point (3, 5) after a -270-degree rotation is (5, -3).
90 degree anticlockwise.
the numbers
Rotation preserves shape - therefore the angle before the rotation equals the angle after the rotation.