There is no specific formula for a sector of a circle. There is a formula for its angle (at the centre), its perimeter, its area.
The area of a sector is the area of the circle multiplied by the fraction of the circle covered by that sector. This is a true statement and correct formula.
To find the area of a shaded sector in a circle, you need the radius and the angle of the sector. Assuming the radius of the circle is 18 cm, the area of the entire circle is given by the formula (A = \pi r^2), which equals approximately (1017.88 , \text{cm}^2). If you know the angle of the sector in degrees, you can calculate the area of the sector using the formula (A_{sector} = \frac{\theta}{360} \times A_{circle}), where (\theta) is the angle of the sector. Without the angle, I cannot provide the exact area of the shaded sector.
The area of a sector of a circle is given by the formula ( \text{Area of sector} = \frac{\theta}{360} \times \pi r^2 ), where ( \theta ) is the angle of the sector in degrees and ( r ) is the radius of the circle. If the shaded sector has an area of 6 square units, we need the angle to determine the entire area of the circle. However, assuming this sector represents a certain fraction of the circle, the area of the entire circle can be found using the formula ( \text{Area of circle} = \frac{6 \times 360}{\theta} ). If the angle is known, you can calculate the total area accordingly.
If it is a sector of a circle then the arc is the curved part of the circle which forms a boundary of the sector.
In a unit circle, the radius is 1, so the arc length ( s ) of a sector can be calculated using the formula ( s = r\theta ), where ( r ) is the radius and ( \theta ) is the angle in radians. Since the radius ( r = 1 ), the formula simplifies to ( s = \theta ). Therefore, if the arc length is 4.2, the measure of the angle of the sector is ( \theta = 4.2 ) radians.
The area of a sector is the area of the circle multiplied by the fraction of the circle covered by that sector. This is a true statement and correct formula.
To determine the size of a sector in a circle, you can use the formula: Area of the sector = (θ/360) × πr², where θ is the central angle of the sector in degrees and r is the radius of the circle. If you have the angle in radians, the formula becomes: Area of the sector = (1/2) × r² × θ. This allows you to calculate the area based on the proportion of the circle that the sector represents.
area of sector = (angle at centre*area of circle)/360
To find the area of a shaded sector in a circle, you need the radius and the angle of the sector. Assuming the radius of the circle is 18 cm, the area of the entire circle is given by the formula (A = \pi r^2), which equals approximately (1017.88 , \text{cm}^2). If you know the angle of the sector in degrees, you can calculate the area of the sector using the formula (A_{sector} = \frac{\theta}{360} \times A_{circle}), where (\theta) is the angle of the sector. Without the angle, I cannot provide the exact area of the shaded sector.
The area of a sector of a circle is given by the formula ( \text{Area of sector} = \frac{\theta}{360} \times \pi r^2 ), where ( \theta ) is the angle of the sector in degrees and ( r ) is the radius of the circle. If the shaded sector has an area of 6 square units, we need the angle to determine the entire area of the circle. However, assuming this sector represents a certain fraction of the circle, the area of the entire circle can be found using the formula ( \text{Area of circle} = \frac{6 \times 360}{\theta} ). If the angle is known, you can calculate the total area accordingly.
In order to find the area of a sector of a circle you can use the formula below: pi*r^2 * # of degrees/ 360
Area of sector/Area of circle = Angle of sector/360o Area of sector = (Area of circle*Angle of sector)/360o
If it is a sector of a circle then the arc is the curved part of the circle which forms a boundary of the sector.
The formula for the area of a sector of a circle is given by ( A = \frac{\theta}{360} \times \pi r^2 ), where ( A ) is the area, ( \theta ) is the central angle in degrees, and ( r ) is the radius of the circle. If the angle is in radians, the formula simplifies to ( A = \frac{1}{2} r^2 \theta ). The length of the arc of the sector can be calculated using the formula ( L = \frac{\theta}{360} \times 2\pi r ) for degrees, or ( L = r\theta ) for radians.
In a unit circle, the radius is 1, so the arc length ( s ) of a sector can be calculated using the formula ( s = r\theta ), where ( r ) is the radius and ( \theta ) is the angle in radians. Since the radius ( r = 1 ), the formula simplifies to ( s = \theta ). Therefore, if the arc length is 4.2, the measure of the angle of the sector is ( \theta = 4.2 ) radians.
true
For a circle where sector measures 10 degrees and the diameter of the circle is 12: Sector area = 3.142 square units.