Chat with our AI personalities
It depends whether the UNSHOWN figure has the shaded sector as the sector which includes the 90° angle, or the one which excludes it. Assuming that it is the sector including the 90° angle, ie the question should have been written: What is the area of a sector of a circle with a radius of 3 units when the angle of the sector is 90°? It is a fraction of the whole area of the circle. The fraction is 90°/360° (as there are 360° in a full turn and only 90° are required) = 1/4 Area circle = π × radius² = π × (3 units)² = 9π square units → area 90° sector = ¼ × area circle = ¼ × 9π square units = 9π/4 square units ≈ 7.1 square units
It is: 110/360*pi*12*12 = 44*pi square units
A circle with a radius of 135 units has an area of 57,255.53 square units.
(Length of side of square)^2 - Pi * radius^2
It ultimately depends on the areas of the two shapes: Acircle = pi*r2 Asquare = l2 Fraction shaded = Acircle / Asquare = pi*r2/ l2 If the circle fills the square (e.g. l=2r) then the formula simplifies considerably: pi*r2/4r2 = pi/4