The answer is in the question! 5 Hz Also, a wavelength cannot be 5 cycles - wrong units.
I've got no idea what a "5 cycle wavelength" is. However, I would just apply this formula: v = fλ, where v is the velocity (speed in m/s) of the wave, f is the frequency (in hertz), and λ is the wavelength (in m).
Wavelength = (speed)/(frequency)Frequency = 1/periodso wavelength = (speed) x (period)Speed = (20 meter/min) x (1 min/60 sec) = 1/3 meter/secWavelength = (speed) x (period) = (1/3 meter/sec) x (30 sec) = 10 metersThe correct choice is a .
speed of sound in air 334 m/s 334/0.25 = 1336 Hz
The length of a rectangle whose area is 72 square meters and whose width is 6 meters, would be 12. Note that 12 x 6 = 72.
12.5 terahertz. If your wavelength is in meters.
The wavelength of a sound wave can be calculated using the formula: wavelength = speed of sound / frequency. Assuming the speed of sound in air is around 343 m/s, the wavelength of a sound wave with a frequency of 42 Hz would be approximately 8.17 meters.
Speed (of a wave) = frequency x wavelengthTherefore, you have to: * Convert the wavelength to meters. * Divide the speed of light - which is 300 million meters/second - by this wavelength. The answer will be in Hz.
To find the frequency of a beam of light, you can use the equation: frequency = speed of light / wavelength. The speed of light is approximately 3 x 10^8 meters per second. Convert the wavelength from angstroms to meters (1 Angstrom = 1 x 10^-10 meters) and then calculate the frequency in Hz. Finally, convert the frequency to megahertz (MHz) by dividing by 10^6.
The frequency of a photon with a wavelength of 6000 Ångströms can be calculated using the formula: frequency = speed of light / wavelength. For this case, the speed of light is approximately 3.00 x 10^8 m/s. Converting the wavelength to meters, we get 6.00 x 10^-7 m. Plugging these values into the formula, we find the frequency to be approximately 5.00 x 10^14 Hz.
The frequency of radiation can be calculated using the formula: frequency = speed of light / wavelength. Given the speed of light is about 3.00 x 10^8 m/s, you can convert the wavelength from nm to meters (1.73 nm = 1.73 x 10^-9 m) and plug in the values to find the frequency.
The answer is in the question! 5 Hz Also, a wavelength cannot be 5 cycles - wrong units.
The wavelength can be calculated using the formula: wavelength = speed of sound / frequency. Plug in the values: wavelength = 1530 m/s / 7 Hz = 218.57 meters. Therefore, the wavelength of a 7 Hz wave in sea water is approximately 218.57 meters.
Mix it with a local oscillator whose frequency is (the IF frequency) away from the frequency of the FM signal you're interested in.
The wavelength of a sound wave with a frequency of 60 Hz is approximately 5.7 meters. This can be calculated using the formula: wavelength = speed of sound / frequency. The speed of sound in air is around 343 meters per second.
Divide the speed of sound by the wavelength, to get the frequency. The period is the reciprocal of the frequency. The speed of sound in air is about 343 meters/second, but it depends on temperature. The speed of sound in other materials is quite different from the speed of sound in air.
A low pass signal whose bandwidth is much smaller than its center frequency, such as an AM signal. It is a a signal with its spectrum concentrated around zero frequency.