answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
ReneRene
Change my mind. I dare you.
Chat with Rene
SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
More answers

10102 = A16

User Avatar

Wiki User

11y ago
User Avatar

It is A.

User Avatar

Wiki User

8y ago
User Avatar

Add your answer:

Earn +20 pts
Q: What is the hexadecimal symbol equivalent to binary number 1010?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

WHAT IS THE 4 BIT BINARY NUMBER ASSOCIATED WITH HEXADECIMAL SYMBOL C?

The answer is 1100.


What is the 4 bit binary for the hexadecimal symbol C?

1100


What is binary encoded hexadecimal?

There is no such thing as a binary encoded hexadecimal value. The encoding is simply the representation of a number. E.g., the symbol 42 is not a number, it is merely the representation of a number. Forty-two is an actual number. This is because 42 is only the number forty-two when the digits are base-10 (decimal). In octal notation, 42 is thirty-four and in hexadecimal notation 42 is sixty-six. Humans use decimal encoding to represent numbers simply because that's the way we were taught from an early age. We consider them easy to work with simply because we consider it easier to work in powers of 10. However, it's really no easier than working in powers of 5 or 12. Before decimalisation became the norm we actually used sexagesimal, base-60, because of its high divisibility (it's the lowest number that has all the factors 2, 3, 4, 5 and 6). Hence there are 60 seconds to the minute, 60 minutes to the hour, 24 hours in the day (2x2x2x3) and 360 degrees in a rotation. Binary and hexadecimal are simply different ways of encoding the same number. Computers only understand binary, but binary notation is tedious for humans because there are only two symbols to work with. Higher bases allow us to work with numbers more quickly because there are more symbols to play with and therefore more values we can represent with just a single digit. However, any base that is itself a power of two gives us a very simple conversion to and from binary. That is; base-4, base-8 and base-16 are more closely related to binary than is decimal. For instance, two binary digits have four possible combinations, each of which can be represented by just one base-4 digit. Three binary digits have eight possible combinations each of which can be represented by just one base-8 digit (octal notation). It therefore follows that a single base-16 digit can represent any combination of 4-bits. Since a byte is typically 8-bits in length, a hexadecimal digit is known as nybble because it is half-a-byte. Knowing this we can easily convert any number from hexadecimal to binary and back again. And if we can do it easily then a computer can do it just as easily. Converting to and from decimal is not so straightforward, but the computer can be programmed to do that for us as well, since decimal is the notation we're more used to. But when we want to instruct the computer in its own language, hexadecimal is easier to work with than decimal.


What is the symbol number?

The symbol for number is #


What is the formula decimal to binary?

1Set up the problem. For this example, let's convert the decimal number 15610 to binary. Write the decimal number as the dividend inside an upside-down "long division" symbol. Write the base of the destination system (in our case, "2" for binary) as the divisor outside the curve of the division symbol.This method is much easier to understand when visualized on paper, and is much easier for beginners, as it relies only on division by two.To avoid confusion before and after conversion, write the number of the base system that you are working with as a subscript of each number. In this case, the decimal number will have a subscript of 10 and the binary equivalent will have a subscript of 2.2 Divide. Write the integer answer (quotient) under the long division symbol, and write the remainder (0 or 1) to the right of the dividend.[2]Since we are dividing by 2, when the dividend is even the binary remainder will be 0, and when the dividend is odd the binary remainder will be 1.3 Continue to divide until you reach 0. Continue downwards, dividing each new quotient by two and writing the remainders to the right of each dividend. Stop when the quotient is 0.4Write out the new, binary number. Starting with the bottom remainder, read the sequence of remainders upwards to the top. For this example, you should have 10011100. This is the binary equivalent of the decimal number 156. Or, written with base subscripts: 15610 = 100111002This method can be modified to convert from decimal to any base. The divisor is 2 because the desired destination is base 2 (binary). If the desired destination is a different base, replace the 2 in the method with the desired base. For example, if the desired destination is base 9, replace the 2 with 9. The final result will then be in the desired base.