answersLogoWhite

0

There is no inequality for that expression since we are given the equality.

x - 8 = 12

This is the example of equality since the expression has the "=" sign.

For the learning bonus, I solved x for you. I did so by adding both sides by 8.

x - 8 + 8 = 12 + 8

x = 20

User Avatar

Wiki User

12y ago

What else can I help you with?

Related Questions

What is equal 7 x8?

56


How do you solve -12 is less than or equal to -12?

To solve the inequality -12 ≤ -12, we first recognize that both sides are equal. This means that the inequality is true when the values are equal. In this case, -12 is indeed equal to -12, so the inequality holds true. In interval notation, this solution is represented as [-12, -12].


What is the inequality of 4 times a number is at least -48?

The inequality that fits this condition is that x is greater than or equal to -12.


What are the bass tabs for Dont Say Lazy From the Anime K-on?

CHORUS |--------|--------|--------|--------|--------------| |--------|--------|--------|--------|--------------| |--------|--3(x8)-|--5(x8)-|--2(x8)-|--7(x4)-5(x4)-| |--------|--------|--------|--------|--------------| |--------|--------|--------------|--------| |--------|--------|--------------|--------| |--3(x8)-|--5(x8)/|--------------|--------| |--------|--------|--0(x2)-0(x2)-|--0(x5)-| |--------|--------|--------|--------------| |--------|--------|--------|--------------| |--3(x8)-|--5(x8)-|--2(x8)-|--7(x4)-5(x4)-| |--------|--------|--------|--------------| |--------|--------|--------------|------------| |--------|--------|--------------|------------| |--0(x8)-|--2(x8)-|--------------|------------| |--------|--------|--0(x2)-0(x2)-|--0(x4)-10\-| |--------------|-------------| <- |--------------|-------------| | Repeat |--------------|-------------| | 4 times |--0(x2)-0-0-0-|-0-0-0(x2)-1-| <- 1ST VERSE |--------------|--------|--------------|--------| |--------------|--------|--------------|--------| |--------------|--------|--------------|--------| |--0(x2)-0(x2)-|--0(x2)-|--0(x2)-0(x2)-|--0(x4)-| |--------------|-------------|--------------|-------------| |--------------|-------------|--------------|-------------| |--------------|-------------|--------------|-------------| |--0(x2)-0-0-0-|-0-0-0(x2)-1-|--0(x2)-0-0-0-|-0-0-0(x2)-1-| |--------------|--------|--------------|--------| |--------------|--------|--------------|--------| |--------------|--------|--------------|--------| |--0(x2)-0(x2)-|--0(x2)-|--0(x2)-0(x2)-|--0(x4)-| |--------------|-------------|--------------|-------------| |--------------|-------------|--------------|-------------| |--------------|-------------|--------------|-------------| |--0(x2)-0-0-0-|-0-0-0(x2)-1-|--0(x2)-0-0-0-|-0-0-0(x2)-1-| PRE-CHORUS |--------|--------|--------|--------------| |--------|--------|--------|--------------| |--3(x8)-|--5(x8)-|--2(x8)-|--7(x4)-5(x4)-| |--------|--------|--------|--------------| |--12(x8)-|--14(x8)-|--------|--------------| |--10(x8)-|--12(x8)-|--------|--------------| |---------|---------|--7(x8)-|--7(x4)-5(x4)-| |---------|---------|--------|--------------| |--------|--------|--------|--------------| |--------|--------|--------|--------------| |--3(x8)-|--5(x8)-|--2(x8)-|--7(x4)-5(x4)-| |--------|--------|--------|--------------| |--------|--------|--------|-----------| |--------|--------|--------|-----------| |--0(x8)-|--1(x8)-|--2(x7)/|--/14(x7)\-| |--------|--------|--------|-----------| CHORUS |--------|--------|--------|--------------| |--------|--------|--------|--------------| |--3(x8)-|--5(x8)-|--2(x8)-|--7(x4)-5(x4)-| |--------|--------|--------|--------------| |--------|---------|--------------|-----------| |--------|---------|--------------|-----------| |--3(x8)-|--5(x8)/-|--------------|-----------| |--------|---------|--0(x2)-0(x2)-|--0(x3)-8\-| |--------|--------|--------|--------------| |--------|--------|--------|--------------| |--3(x8)-|--5(x8)-|--2(x8)-|--7(x4)-5(x4)-| |--------|--------|--------|--------------| |--------|--------|--------------|------------| |--------|--------|--------------|------------| |--0(x8)-|--2(x8)-|--------------|------------| |--------|--------|--0(x2)-0(x2)-|--0(x4)-12\-| |--------------|-------------| <- |--------------|-------------| | Repeat |--------------|-------------| | 4 times |--0(x2)-0-0-0-|-0-0-0(x2)-1-| <- 2ND VERSE |--------------|--------|--------------|--------| |--------------|--------|--------------|--------| |--------------|--------|--------------|--------| |--0(x2)-0(x2)-|--0(x2)-|--0(x2)-0(x2)-|--0(x4)-| |--------------|-------------| <- |--------------|-------------| | Repeat |--------------|-------------| | 2 times |--0(x2)-0-0-0-|-0-0-0(x2)-1-| <- [ Tab from: http://www.guitartabs.cc/tabs/k/k_on/dont_say_lazy_crd.html ] |--------------|--------|--------------|------------| |--------------|--------|--------------|------------| |--------------|--------|--------------|------------| |--0(x2)-0(x2)-|--0(x2)-|--0(x2)-0(x2)-|--0(x2)-10\-| |--------------|-------------| <- |--------------|-------------| | Repeat |--------------|-------------| | 2 times |--0(x2)-0-0-0-|-0-0-0(x2)-1-| <- PRE-CHORUS |--------|--------|--------|--------------| |--------|--------|--------|--------------| |--3(x8)-|--5(x8)-|--2(x8)-|--7(x4)-5(x4)-| |--------|--------|--------|--------------| |--12(x8)-|--14(x8)-|--------|----------| |--10(x8)-|--12(x8)-|--------|----------| |---------|---------|--7(x8)-|--7-7-5-5-| |---------|---------|--------|---7-7-7--| |--------|--------|--------|--------------| |--------|--------|--------|--------------| |--3(x8)-|--5(x8)-|--2(x8)-|--7(x4)-5(x4)-| |--------|--------|--------|--------------| |--------|--------|--------|----------------| |--------|--------|--------|----------------| |--0(x8)-|--1(x8)-|--2(x7)/|--/14(x5)-12----| |--------|--------|--------|------------14\-| CHORUS |--------|--------|--------|--------------| |--------|--------|--------|--------------| |--3(x8)-|--5(x8)-|--2(x8)-|--7(x4)-5(x4)-| |--------|--------|--------|--------------| |--------|---------|--------------|------------| |--------|---------|--------------|------------| |--3(x8)-|--5(x8)/-|--------------|------------| |--------|---------|--0(x2)-0(x2)-|--0(x3)-12\-| |--------|--------|--------|--------------| |--------|--------|--------|--------------| |--3(x8)-|--5(x8)-|--2(x8)-|--7(x4)-5(x4)-| |--------|--------|--------|--------------| |--------|--------|--------------|------------| |--------|--------|--------------|------------| |--0(x8)-|--2(x8)-|--------------|------------| |--------|--------|--0(x2)-0(x2)-|--0(x4)-12\-| |--------------|--------------| <- |--------------|--------------| | Repeat |--------------|--------------| | 4 times |--0(x2)-0-0-0-|--0-0-0(x2)-1-| <- BRIDGE |-----------|--------| |-----------|--------| |-----------|--------| |--0________|____----| |----------|------------------| <- |-------9/-|--14--12----------| | Repeat |----------|----14--12-14-----| | 3 times |--0-------|---------------12-| <- |----------|------------------| <- |-------9/-|--14--12----------| | Repeat |----------|----14--12-14-----| | 7 times |--0(x7)---|---------------12-| <- |--------|--------| |--------|--------| |--------|--------| |--0(x8)-|--0-----| PRE-CHORUS |--------|--------|--------|--------------| |--------|--------|--------|--------------| |--3(x8)-|--5(x8)-|--2(x8)-|--7(x4)-5(x4)-| |--------|--------|--------|--------------| |--12(x8)-|--14(x8)-|--------|--------------| |--10(x8)-|--12(x8)-|--------|--------------| |---------|---------|--7(x8)-|--7(x4)-5(x4)-| |---------|---------|--------|--------------| |--------|--------|--------|--------------| |--------|--------|--------|--------------| |--3(x8)-|--5(x8)-|--2(x8)-|--7(x4)-5(x4)-| |--------|--------|--------|--------------| |--------|--------|--------|-----------| |--------|--------|--------|-----------| |--0(x8)-|--1(x8)-|--2(x7)/|--/14(x7)\-| |--------|--------|--------|-----------| MINI |--16-14-----| |-------16---| |---------14-| |------------| CHORUS |--------|--------|--------|--------------| |--------|--------|--------|--------------| |--3(x8)-|--5(x8)-|--2(x8)-|--7(x4)-5(x4)-| |--------|--------|--------|--------------| |--------|---------|--------------|------------| |--------|---------|--------------|------------| |--3(x8)-|--5(x8)/-|--------------|------------| |--------|---------|--0(x2)-0(x2)-|--0(x3)-12\-| |--------|--------|--------|--------------| |--------|--------|--------|--------------| |--3(x8)-|--5(x8)-|--2(x8)-|--7(x4)-5(x4)-| |--------|--------|--------|--------------| |--------|--------|--------------|------------| |--------|--------|--------------|------------| |--0(x8)-|--2(x8)-|--------------|------------| |--------|--------|--0(x2)-0(x2)-|--0(x4)-12\-| OUTRO |--------------|--------------| <- |--------------|--------------| | Repeat |--------------|--------------| | 2 times |--0(x2)-0-0-0-|--0-0-0(x2)-1-| <- |--------------|--------------| |--------------|--------------| |--------------|--------------| |--0(x2)-0-0-0-|--0-0-12-0-13~| |--------------|--------------| |--------------|--------------| |--------------|--------------| |--0(x2)-0-0-0-|--0-0-0(x2)-1-|


What operation gives the solution to the inequality 4x 12?

An inequality requires an inequality sign, usually "less than", "less-than-or-equal", "greater than", or "greater than or equal". Assuming one of these inequality signs is between the "4x" and the "12", for example: 4x < 12, just divide both sides by 4. Just as when you solve equations, the idea is to isolate the variable on one side.


What inequality is greater than or equal to -5?

An inequality has no magnitude. A number can be greater than or equal to -5, but not an inequality.


Is there ever a time when the same value will be a solution for both the equation and the inequality?

Yes, but only when the inequality is not a strict inequality: thatis to say it is a "less than or equal to" or "more than or equal to" inequality. In such cases, the solution to the "or equal to" aspect will satisfy the corresponding inequality.


What is Twelve is greater than or equal to five times a number n?

The inequality "Twelve is greater than or equal to five times a number n" can be expressed mathematically as ( 12 \geq 5n ). To solve for ( n ), you can rearrange the inequality to find that ( n \leq \frac{12}{5} ) or ( n \leq 2.4 ). This means that the value of ( n ) must be less than or equal to 2.4 for the inequality to hold true.


What is a comparison of two expressions that are not equal?

an inequality


When will the graph of an equation inequality be a dotted line?

The line is dotted when the inequality is a strict inequality, ie it is either "less than" (<) or "greater than" (>). If there is an equality in the inequality, ie "less than or equal to" (≤), "greater than or equal to" (≥) or "equal to" (=) then the line is drawn as a solid line.


Is xl7.6x7.0 an inequality?

No. To be an inequality, it must somewhere have a greater than, less than, greater-or-equal, or less-or-equal sign.


Is 4n9 an example of an inequality?

No. An inequality will show two expressions that aren't equal.