trigonal planar
The molecular geometry is octahedral.
The molecular geometry of C2H2Br2 is trigonal planar.The molecular geometry of C2H2Br2 is trigonal planar.
The molecular geometry of secl2 is BENT.
The molecular geometry of H3O+ is Trigonal Pyramidal because it has 3 bonding pairs and 1 nonbonding pair (lone pair)
See-saw is the molecular geometry, and trigonal bi-pyramidal is the orbital geometry.
The electron pair geometry of the borate ion (BO3^3−) is trigonal planar. This is because the central boron atom is surrounded by three oxygen atoms, with no lone pairs on the boron. The bond angles are approximately 120 degrees, reflecting the arrangement of the electron pairs in a planar configuration.
The charge of the borate ion (BO3) is -3.
The molecular geometry is octahedral.
The molecular geometry of C2H2Br2 is trigonal planar.The molecular geometry of C2H2Br2 is trigonal planar.
The molecular geometry of secl2 is BENT.
The molecular geometry of HClO is bent.
The molecular geometry of N2O2 is linear.
The molecular geometry of H3O+ is Trigonal Pyramidal because it has 3 bonding pairs and 1 nonbonding pair (lone pair)
The molecular geometry of IF4- is square planar.
The molecular geometry of NHF2 is trigonal pyramidal.
See-saw is the molecular geometry, and trigonal bi-pyramidal is the orbital geometry.
The molecular geometry of SO2 is bent, and the electron pair geometry is trigonal planar.