The systematic name for the molecule N2H4 is dinitrogen tetrahydride. "Di" because there are two atoms of nitrogen and "tetra" because there are four atoms of hydrogen.
Chat with our AI personalities
PIERRE DE FERMAT' S LAST THEOREM. CASE SPECIAL N=3 AND.GENERAL CASE N>2. . THE CONDITIONS.Z,X,Y,N ARE THE INTEGERS . Z*X*Y*N>0.N>2. Z^3=/=X^3+Y^3 AND Z^N=/=X^N+Y^N. SPECIAL CASE N=3. WE HAVE (X^2+Y^2)^2=X^4+Y^4+2X^2*Y^2. BECAUSE X*Y>0=>2X^2*Y^2>0. SO (X^2+Y^2)^2=/=X^4+Y^4. CASE 1. IF Z^2=X^2+Y^2 SO (Z^2)^2=(X^2+Y^2)^2 BECAUSE (X^+Y^2)^2=/=X^4+Y^4. SO (Z^2)^2=/=X^4+Y^4. SO Z^4=/=X^4+Y^4. CASE 2. IF Z^4=X^4+Y^4 BECAUSE X^4+Y^4.=/= (X^2+Y^2.)^2 SO Z^4=/=(X^2+Y^2.)^2 SO (Z^2)^2=/=(X^2+Y^2.)^2 SO Z^2=/=X^2+Y^2. (1) AND (2)=> Z^4+Z^2=/=X^4+Y^4+X^2+Y^2. SO 2Z^4+2Z^2=/=2X^4+2Y^4+2X^2+Y^2. SO (Z^4+Z^2+2Z^3+Z^4+Z^2-2Z^3)=/=(X^4+X^2+2X^3+X^4+X^2-2X^3)+)(Y^4+Y^2+2Y^3+Y^4+Y^2-2Y^3) SO IF (Z^4+Z^2+2Z^3)/4=(Z^4+Z^2+2Z^3)/4+(Z^4+Z^2+2Z^3)/4 => (Z^4+Z^2-2Z^3)/4=/=(Z^4+Z^2-2Z^3)/4+(Z^4+Z^2-2Z^3/4) AND SO IF (Z^4+Z^2-2Z^3)/4=(Z^4+Z^2-2Z^3)/4+(Z^4+Z^2-2Z^3)./4 => (Z^4+Z^2+2Z^3)/4=/=(Z^4+Z^2+2Z^3)/4+(Z^4+Z^2+2Z^3)/4 BECAUSE (Z^4+Z^2+2Z^3)/4 - (Z^4+Z^2-2Z^3)/4 =Z^3. SO Z^3=/=X^3+Y^3. GENERAL CASE N>2. Z^N=/=X^N+Y^N. WE HAVE [X^(N-1)/2+Y^(N-1)/2]^(N+1)/(N-1)=X^(N+1)/2+Y^(N+1)/2+ H. BECAUSE X*Y>0=>H>0. SO [X^(N-1)/2+Y^(N-1)/2]^(N+1)/(N-1)=/= X^(N+1)/2+Y^(N+1)/2 CASE 1. IF Z^(N-1)/2=X^(N-1)/2+Y^(N-1)/2 SO [Z^(N-1)/2]^(N+1)/(N-1)=[X^(N-1)/2+Y^(N-1)/2 ]^(N+1)/(N-1). BECAUSE [X^(N-1)/2+Y^(N-1)/2 ]^(N+1)/(N-1)=/=X^(N+1)/2+Y(N+1)/2. SO [Z^(N-1)/2]^(N+1)/(N-1)=/=X^(N+1)/2+Y(N+1)/2. SO Z^(N+1)/2=/=X^(N+1)/2+Y^(N+1)/2. CASE 2. IF Z^(N+1)/2=X^(N+1)/2+Y^(N+1)/2 SO [Z^(N+1)/2]^(N-1)/(N+1)=[X^(N+1)/2+Y^(N+1)/2 ]^(N-1)/(N+1) BECAUSE [X^(N+1)/2+Y^(N+1)/2](N-1)/(N+1)=/=X(N-1)/2+Y^(N-1)/2. SO [Z^(N+1)/2]^(N-1)/(N+1)=/=X(N-1)/2+Y^(N-1)/2. SO Z^(N-1)/2=/=X(N-1)/2+Y^(N-1)/2.. SO (1) AND (2)=> Z^(N+1)/2+Z^(N-1)/2=/=X^(N+1)/2+Y^(N+1)/2+X^(N-1)/2+Y^(N-1)/2. SO 2[Z^(N+1)/2+Z^(N-1)/2]=/=2[X^(N+1)/2+Y^(N+1)/2]+2[X^(N-1)/2+Y^(N-1)/2.] SO [Z^(N+1)/2+Z^(N-1)/2+2Z^N ]+[Z^(N+1)/2+Z^(N-1)/2-2Z^N ]=/=[X^(N+1)/2+X^(N-1)/2+2X^N ]+[X^(N+1)/2+X^(N-1)/2-2X^N ]+[Y^(N+1)/2+Y^(N-1)/2+2Y^N ]+[Y^(N+1)/2+Y^(N-1)/2-2Y^N ] SO IF [Z^(N+1)/2+Z^(N-1)/2+2Z^N ]/4=[X^(N+1)/2+X^(N-1)/2+2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2+2Y^N ]/4=> [Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=/=[X^(N+1)/2+X^(N-1)/2-2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2-2Y^N ]/4 AND IF [Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=[X^(N+1)/2+X^(N-1)/2-2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2-2Y^N ]/4 => [Z^(N+1)/2+Z^(N-1)/2+2Z^N ]/4=/=[X^(N+1)/2+X^(N-1)/2+2X^N ]/4 + [Y^(N+1)/2+Y^(N-1)/2+2Y^N ]/4 BECAUSE [Z^(N+1)/2+Z^(N-1)/2+2Z^N ] /4- [Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=Z^N. SO Z^N=/=X^N+Y^N HAPPY&PEACE. Trantancuong.
The equation for diagonals is n(n - 3)/2, and when 4 is replaced for n, this yields 4(4 - 3)/2 = 2(1) = 2.
n, n^2, n^2^2, n+1, (n+1)^2, (n+1)^2^2, n+2, ...
n-2,4,6-number b-b,c,d-ball coin disc i-a,a,a-name
It is G(n) = 8*4^(n-1) or 2*4^n for n = 1, 2, 3, ...