This is the Fibonacci sequence, where the number is the sum of the two preceding numbers. The nth term is the (n-1)th term added to (n-2)th term
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 9, then 13, then 17, and so on. This pattern indicates that the nth term is given by the formula n^2 + n - 1. So, the nth term of the sequence 0, 9, 22, 39, 60 is n^2 + n - 1.
n - 1
The given sequence is an arithmetic sequence where each term increases by 4. The first term (a) is 13, and the common difference (d) is 4. The nth term can be found using the formula: ( a_n = a + (n-1)d ). Therefore, the nth term is ( a_n = 13 + (n-1) \cdot 4 = 4n + 9 ).
[ 25 - 6n ] is.
The nth term is: 5-2n
The nth term is: 5-6n
The nth term is: 3n+1 and so the next number will be 16
The nth term is 6n+1 and so the next term will be 31
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 9, then 13, then 17, and so on. This pattern indicates that the nth term is given by the formula n^2 + n - 1. So, the nth term of the sequence 0, 9, 22, 39, 60 is n^2 + n - 1.
The given sequence is an arithmetic sequence with a common difference of 6. To find the nth term of this sequence, we can use the following formula: nth term = first term + (n - 1) x common difference where n is the position of the term we want to find. In this sequence, the first term is 1 and the common difference is 6. Substituting these values into the formula, we get: nth term = 1 + (n - 1) x 6 nth term = 1 + 6n - 6 nth term = 6n - 5 Therefore, the nth term of the sequence 1, 7, 13, 19 is given by the formula 6n - 5.
1+3n
n - 1
The given sequence is an arithmetic sequence where each term increases by 4. The first term (a) is 13, and the common difference (d) is 4. The nth term can be found using the formula: ( a_n = a + (n-1)d ). Therefore, the nth term is ( a_n = 13 + (n-1) \cdot 4 = 4n + 9 ).
3n-2
2n+1
[ 25 - 6n ] is.
The nth term is 4n - 3