There are very many possible solutions. The simplest polynomial solution is
t(n) = (n^4 - 14n^3 + 71n^2 + 14n + 24)/24.
If you mean: 6 12 18 24 then the nth term is 6n
To find the nth term of the sequence 9, 12, 17, 24, 33, we first look at the differences between consecutive terms: 3, 5, 7, and 9. These differences themselves increase by 2, indicating a quadratic relationship. We can derive the nth term formula as ( a_n = n^2 + 8n + 1 ). Thus, the nth term of the sequence can be expressed as ( a_n = n^2 + 8n + 1 ).
To find the nth term of the sequence 9, 12, 17, 24, 33, 44, we first observe the differences between consecutive terms: 3, 5, 7, 9, 11. These differences form an arithmetic sequence with a common difference of 2. This suggests that the nth term can be expressed as a quadratic function. By deriving the formula, the nth term is given by ( a_n = n^2 + 8n - 1 ).
To find the 18th term of the arithmetic sequence 3, 10, 17, 24..., first, identify the common difference. The difference between consecutive terms is 7 (10 - 3, 17 - 10, 24 - 17). The formula for the nth term of an arithmetic sequence is given by ( a_n = a_1 + (n - 1)d ), where ( a_1 ) is the first term and ( d ) is the common difference. For the 18th term: ( a_{18} = 3 + (18 - 1) \times 7 = 3 + 119 = 122 ).
Assuming the pattern would continue: 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13...
The nth term in the arithmetic progression 10, 17, 25, 31, 38... will be equal to 7n + 3.
7n - 4
The nth term is 7n-4 and so the next number in the sequence is 31
44
You can see that all the numbers go up by 7. This means that the first part of the nth term rule for this sequence is 7n. Now, you have to find out how to get from 7 to 3, 14 to 10, 21 to 17 ... this is because we are going up in the 7 times table. To get from the seventh times table to the sequence, you take away four. So the answer is : 7n-4
Subtract 7 from each number, so the 9th number would be 59.
The nth term is (36 - 4n)
If you mean: 6 12 18 24 then the nth term is 6n
To find the nth term of the sequence 9, 12, 17, 24, 33, we first look at the differences between consecutive terms: 3, 5, 7, and 9. These differences themselves increase by 2, indicating a quadratic relationship. We can derive the nth term formula as ( a_n = n^2 + 8n + 1 ). Thus, the nth term of the sequence can be expressed as ( a_n = n^2 + 8n + 1 ).
To find the nth term of the sequence 9, 12, 17, 24, 33, 44, we first observe the differences between consecutive terms: 3, 5, 7, 9, 11. These differences form an arithmetic sequence with a common difference of 2. This suggests that the nth term can be expressed as a quadratic function. By deriving the formula, the nth term is given by ( a_n = n^2 + 8n - 1 ).
The sequence progresses by adding 7 to the previous term.The nth term is thus equal to 10 + 7n. The 11th term therefore is equal to 10 + (7 * 11) = 10 + 77 = 87.
The given sequence appears to be increasing by 10 each time. To find the nth term, we can use the formula for arithmetic sequences: nth term = first term + (n-1) * common difference. In this case, the first term is 4 and the common difference is 10. Therefore, the nth term for this sequence would be 4 + (n-1) * 10, which simplifies to 10n - 6.