It is 2, assuming the pattern is repeated as given. 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1... If the intended pattern is to continue to subtract 1 from the last number, then the 5479th digit of the pattern will be -5470.
There is not enough information to answer the question. The pattern could be 1 (+1) = 2 (+3) = 5 (+5) = 10 ... where the differences are the odd integers, or 1 (+1) = 2 (+3) = 5 (+6) = 11 ... where the differences are the triangular numbers, or 1 (+1) = 2 (+3) = 5 (+9) = 14 ... where the differences are powers of 3, or many, many other possibilities.
Add the previous 2 numbers to get the next number.
There are 64 subsets, and they are:{}, {A}, {1}, {2}, {3}, {4}, {5}, {A,1}, {A,2}, {A,3}, {A,4}, {A,5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3, 5}, {4,5}, {A, 1, 2}, {A, 1, 3}, {A, 1, 4}, {A, 1, 5}, {A, 2, 3}, {A, 2, 4}, {A, 2, 5}, {A, 3, 4}, {A, 3, 5}, {A, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {A, 1, 2, 3}, {A, 1, 2, 4}, {A, 1, 2, 5}, {A, 1, 3, 4}, {A, 1, 3, 5}, {A, 1, 4, 5}, {A, 2, 3, 4}, {A, 2, 3, 5}, {A, 2, 4, 5}, {A, 3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {A, 1, 2, 3, 4}, {A, 1, 2, 3, 5}, {A, 1, 2, 4, 5}, {A, 1, 3, 4, 5}, {A, 2, 3, 4, 5}, {1, 2, 3, 4, 5} {A, 1, 2, 3,,4, 5} .
what are the next numbers in the pattern 1, 2, 3, 5, 8, 13,_,_
1:2:3:5:8:5:3:2:1
1123581358 1+1=2 1+2=3 3+5=8 5+8=13 3+5=8
It is 2, assuming the pattern is repeated as given. 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1... If the intended pattern is to continue to subtract 1 from the last number, then the 5479th digit of the pattern will be -5470.
this series increments in powers of 3 like 1+3^0=2 2+3^1=5 5+3^2=14 14+3^3=41 and so on....
You add the 2 numbers before e.g. 2+3=5
There is not enough information to answer the question. The pattern could be 1 (+1) = 2 (+3) = 5 (+5) = 10 ... where the differences are the odd integers, or 1 (+1) = 2 (+3) = 5 (+6) = 11 ... where the differences are the triangular numbers, or 1 (+1) = 2 (+3) = 5 (+9) = 14 ... where the differences are powers of 3, or many, many other possibilities.
11
0, 1, 1 (0+1), 2 (1+1), 3 (2+1), 5 (2+3), 8 (3+5), 13(5+8), 21 (13+8), 34 (21+13),....and so on.
Add the previous 2 numbers to get the next number.
it is basically a pattern e.g. 1 2 3 4 5 6 7 8 9 10 11 1 2 1 3 1 4 1 5 1 6 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9
There are 64 subsets, and they are:{}, {A}, {1}, {2}, {3}, {4}, {5}, {A,1}, {A,2}, {A,3}, {A,4}, {A,5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3, 5}, {4,5}, {A, 1, 2}, {A, 1, 3}, {A, 1, 4}, {A, 1, 5}, {A, 2, 3}, {A, 2, 4}, {A, 2, 5}, {A, 3, 4}, {A, 3, 5}, {A, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {A, 1, 2, 3}, {A, 1, 2, 4}, {A, 1, 2, 5}, {A, 1, 3, 4}, {A, 1, 3, 5}, {A, 1, 4, 5}, {A, 2, 3, 4}, {A, 2, 3, 5}, {A, 2, 4, 5}, {A, 3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {A, 1, 2, 3, 4}, {A, 1, 2, 3, 5}, {A, 1, 2, 4, 5}, {A, 1, 3, 4, 5}, {A, 2, 3, 4, 5}, {1, 2, 3, 4, 5} {A, 1, 2, 3,,4, 5} .
what are the next numbers in the pattern 1, 2, 3, 5, 8, 13,_,_