answersLogoWhite

0

the pattern is plus 0, plus 1, plus 2, and so on

--------------------------------------------------------------

Also known as a Fibonacci number sequence. As above each number is the sum of the previous two.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What is the 5479th digit of the pattern 8 7 6 5 4 3 2 1?

It is 2, assuming the pattern is repeated as given. 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1... If the intended pattern is to continue to subtract 1 from the last number, then the 5479th digit of the pattern will be -5470.


What is the pattern 112358?

The sequence 112358 represents the beginning of the Fibonacci series, where each number is the sum of the two preceding ones. It starts with 1, 1, 2, 3, 5, and 8. In this pattern, 1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, and 3 + 5 = 8. The pattern continues infinitely, with each subsequent number derived from the sum of the last two.


What is the rule to the pattern 112358?

The sequence 112358 follows the Fibonacci pattern, where each number is the sum of the two preceding numbers. Starting with 1 and 1, the next numbers are calculated as follows: 1+1=2, 1+2=3, 2+3=5, resulting in the sequence 1, 1, 2, 3, 5, 8. This pattern continues indefinitely.


What is the mathematical pattern for 1 2 5...?

There is not enough information to answer the question. The pattern could be 1 (+1) = 2 (+3) = 5 (+5) = 10 ... where the differences are the odd integers, or 1 (+1) = 2 (+3) = 5 (+6) = 11 ... where the differences are the triangular numbers, or 1 (+1) = 2 (+3) = 5 (+9) = 14 ... where the differences are powers of 3, or many, many other possibilities.


What is the subset of set A12345?

There are 64 subsets, and they are:{}, {A}, {1}, {2}, {3}, {4}, {5}, {A,1}, {A,2}, {A,3}, {A,4}, {A,5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3, 5}, {4,5}, {A, 1, 2}, {A, 1, 3}, {A, 1, 4}, {A, 1, 5}, {A, 2, 3}, {A, 2, 4}, {A, 2, 5}, {A, 3, 4}, {A, 3, 5}, {A, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {A, 1, 2, 3}, {A, 1, 2, 4}, {A, 1, 2, 5}, {A, 1, 3, 4}, {A, 1, 3, 5}, {A, 1, 4, 5}, {A, 2, 3, 4}, {A, 2, 3, 5}, {A, 2, 4, 5}, {A, 3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {A, 1, 2, 3, 4}, {A, 1, 2, 3, 5}, {A, 1, 2, 4, 5}, {A, 1, 3, 4, 5}, {A, 2, 3, 4, 5}, {1, 2, 3, 4, 5} {A, 1, 2, 3,,4, 5} .

Related Questions

Is there a pattern behind the Golden Ratio?

1:2:3:5:8:5:3:2:1


Why is the pattern 1123581358 famous?

1123581358 1+1=2 1+2=3 3+5=8 5+8=13 3+5=8


What is the 5479th digit of the pattern 8 7 6 5 4 3 2 1?

It is 2, assuming the pattern is repeated as given. 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1... If the intended pattern is to continue to subtract 1 from the last number, then the 5479th digit of the pattern will be -5470.


What are the increments of the pattern 1 2 5 14?

this series increments in powers of 3 like 1+3^0=2 2+3^1=5 5+3^2=14 14+3^3=41 and so on....


What is the pattern 1-1-2-3-5-8-13-21?

You add the 2 numbers before e.g. 2+3=5


What is the rule to the pattern 112358?

The sequence 112358 follows the Fibonacci pattern, where each number is the sum of the two preceding numbers. Starting with 1 and 1, the next numbers are calculated as follows: 1+1=2, 1+2=3, 2+3=5, resulting in the sequence 1, 1, 2, 3, 5, 8. This pattern continues indefinitely.


What is the mathematical pattern for 1 2 5...?

There is not enough information to answer the question. The pattern could be 1 (+1) = 2 (+3) = 5 (+5) = 10 ... where the differences are the odd integers, or 1 (+1) = 2 (+3) = 5 (+6) = 11 ... where the differences are the triangular numbers, or 1 (+1) = 2 (+3) = 5 (+9) = 14 ... where the differences are powers of 3, or many, many other possibilities.


What is the pattern of the Fibonacci numbers?

0, 1, 1 (0+1), 2 (1+1), 3 (2+1), 5 (2+3), 8 (3+5), 13(5+8), 21 (13+8), 34 (21+13),....and so on.


What is the number pattern for 1 2 3 5 7?

11


What is the subset of set A12345?

There are 64 subsets, and they are:{}, {A}, {1}, {2}, {3}, {4}, {5}, {A,1}, {A,2}, {A,3}, {A,4}, {A,5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3, 5}, {4,5}, {A, 1, 2}, {A, 1, 3}, {A, 1, 4}, {A, 1, 5}, {A, 2, 3}, {A, 2, 4}, {A, 2, 5}, {A, 3, 4}, {A, 3, 5}, {A, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {A, 1, 2, 3}, {A, 1, 2, 4}, {A, 1, 2, 5}, {A, 1, 3, 4}, {A, 1, 3, 5}, {A, 1, 4, 5}, {A, 2, 3, 4}, {A, 2, 3, 5}, {A, 2, 4, 5}, {A, 3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {A, 1, 2, 3, 4}, {A, 1, 2, 3, 5}, {A, 1, 2, 4, 5}, {A, 1, 3, 4, 5}, {A, 2, 3, 4, 5}, {1, 2, 3, 4, 5} {A, 1, 2, 3,,4, 5} .


What is the pattern rule for this pattern 1-1-2-3-5-8-13?

Add the previous 2 numbers to get the next number.


What is a math sequence?

it is basically a pattern e.g. 1 2 3 4 5 6 7 8 9 10 11 1 2 1 3 1 4 1 5 1 6 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9