Q: What is the percent error for a mass measurement of 17.1 g given that the correct value is 19.9 g?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

The error in a set of observations is usually expressed in terms of the Standard Deviation of the measurement set. This implies that for a given plotted point, you have several measurements.

Percent error refers to the percentage difference between a measured value and an accepted value. To calculate the percentage error for density of pennies, the formula is given as: percent error = [(measured value - accepted value) / accepted value] x 100.

The answer will depend on the precision of the measurement. The fact that the answer is given to 2 decimal places does not imply that the measurement is accurate to 2 dp. It could have been measured using an instrument accurate to 0.02 units.

When you calculate results that are aiming for known values, the percent error formula is useful tool for determining the precision of your calculations. The formula is given by: The experimental value is your calculated value, and the theoretical value is your known value.

It is impossible to tell when there are no units of measurement given with the numbers.It is impossible to tell when there are no units of measurement given with the numbers.It is impossible to tell when there are no units of measurement given with the numbers.It is impossible to tell when there are no units of measurement given with the numbers.

Related questions

The error in a set of observations is usually expressed in terms of the Standard Deviation of the measurement set. This implies that for a given plotted point, you have several measurements.

Percent error refers to the percentage difference between a measured value and an accepted value. To calculate the percentage error for density of pennies, the formula is given as: percent error = [(measured value - accepted value) / accepted value] x 100.

If my calculations are correct, then 15% would be three, since 40% is eight.

3 The student can measure the given angles to within 2 degrees of the actual measurement and identify each angle, with 95% accuracy 2 The student is able to measure the given angles to within 10 degrees, and is able to identify the angles with 95% accuracy 1 Student is unable to correctly measure the given angles and/or identify the angles correctly

It is half the place value of the last digit that is given. In this case, it is + or -0.05m = + or - 5 cm.

The answer will depend on the precision of the measurement. The fact that the answer is given to 2 decimal places does not imply that the measurement is accurate to 2 dp. It could have been measured using an instrument accurate to 0.02 units.

When you calculate results that are aiming for known values, the percent error formula is useful tool for determining the precision of your calculations. The formula is given by: The experimental value is your calculated value, and the theoretical value is your known value.

It is impossible to tell when there are no units of measurement given with the numbers.It is impossible to tell when there are no units of measurement given with the numbers.It is impossible to tell when there are no units of measurement given with the numbers.It is impossible to tell when there are no units of measurement given with the numbers.

Percent by mass over volume is a measurement that expresses the mass of a substance in a given volume as a percentage. It is calculated by dividing the mass of the substance by the volume of the solution and then multiplying by 100. This measurement is commonly used in chemistry to quantify the concentration of a solute in a solution.

When giving the result of the measurement, its important to state the precision or estimated uncertainty, in the measurement. The percent uncertainty is simply the radio of the uncertainty to the measured value, multiplied by 100. 4.19m take the last decimal unit, is 9 but with value of 1/100 .01 is the uncertainty Now, .01/4.19 x 100 % = 0.24%

If the distance is known to perfection, an acceleration is constant, then the absolute error in the calculation of acceleration is 2/t3, where t is the measured time.

5% is the same as 0.05 and so multiply it by the given number for the correct answer. 5% of 65,000,000 = 3,250,000