answersLogoWhite

0

Points: (s, 2s) and (3s, 8s)

Slope: (8s-2s)/(3s-s) = 6s/2s = 3

Perpendicular slope: -1/3

Midpoint: (s+3s)/2 and (2s+8s)/2 = (2s, 5s)

Equation: y-5s = -1/3(x-2s) => 3y-15s = -1(x-2s) => 3y = -x+17x

Perpendicular bisector equation in its general form: x+3y-17s = 0

User Avatar

Wiki User

11y ago

What else can I help you with?

Related Questions

What is a characteristic of a perpendicular bisector?

Given a straight line joining the points A and B, the perpendicular bisector is a straight line that passes through the mid-point of AB and is perpendicular to AB.


How do you find the midpoint the slope the perpendicular slope and the equation for the perpendicular bisector of the line segment joining the points of 3 5 and 7 7?

Midpoint = (3+7)/2, (5+7)/2 = (5, 6) Slope of line segment = 7-5 divided by 7-3 = 2/4 = 1/2 Slope of the perpendicular = -2 Equation of the perpendicular bisector: y-y1 = m(x-x1) y-6 =-2(x-5) y = -2x+10+6 Equation of the perpendicular bisector is: y = -2x+16


What is the difference between a perpendicular line and a perpendicular bisector?

A perpendicular line is one that is at right angle to another - usually to a horizontal line. A perpendicular bisector is a line which is perpendicular to the line segment joining two identified points and which divides that segment in two.


What is the equation for the perpendicular bisector of the line segment joining the points of 3 5 and 7 7?

y = -2x+16 which can be expressed in the form of 2x+y-16 = 0


What are the values of a and b given that y plus 4x equals 11 is the perpendicular bisector equation of the line joining a 2 to 6 b?

Their values work out as: a = -2 and b = 4


What is the locus of points equidistant from two points?

The perpendicular bisector of the straight line joining the two points.


What describes the Locus of all points that are equidistant from 2 lines?

The perpendicular bisector of the line joining the two points.


What is the perpendicular bisector equation joining the line segment of -2 plus 5 and -8 -3 giving brief details?

Points: (-2, 5) and (-8, -3) Midpoint: (-5, 1) Slope: 4/3 Perpendicular slope: -3/4 Use: y-1 = -3/4(x--5) Bisector equation: y = -3/4x-11/4 or as 3x+4y+11 = 0


What is the locus of points equidistant from two points A and B that are 8 meters apart?

It is the perpendicular bisector of AB, the line joining the two points.


What is the equation and its perpendicular bisector equation of the line joining the points of 1 2 and 3 4 showing work?

1 Points: (1, 2) and (3, 4) 2 Slope: (2-4)/(1-3) = 1 3 Perpendicular slope: -1 4 Midpoint: (1+3)/2 and (2+4)/2 = (2, 3) 5 Equation: y-2 = 1(x-1) => y = x+1 6 Bisector equation: y-3 = -1(x-2) => y = -x+5


What are the values of a and b when y plus 4x equals 11 is the perpendicular bisector of the line joining a 2 to 6 b showing workings?

They must be equidistant from the point of bisection which is their midpoint and works out that a = -2 and b = 4 Sketching the equations on the Cartesian plane will also help you in determining their values


Determine an equation for the right bisector of the line segment joining A 3and6 and B-1and2?

x2-x1,y2-y1