answersLogoWhite

0


Best Answer

Midpoint = (3+7)/2, (5+7)/2 = (5, 6)

Slope of line segment = 7-5 divided by 7-3 = 2/4 = 1/2

Slope of the perpendicular = -2

Equation of the perpendicular bisector: y-y1 = m(x-x1)

y-6 =-2(x-5)

y = -2x+10+6

Equation of the perpendicular bisector is: y = -2x+16

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you find the midpoint the slope the perpendicular slope and the equation for the perpendicular bisector of the line segment joining the points of 3 5 and 7 7?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How do you write an equilateral triangle line of symmetry?

A line joining any vertex to the midpoint of the opposite side. Because of the properties of an equilateral triangle, this line may be described as the median, the perpendicular bisector of a side or an angle bisector.


What is the perpendicular bisector equation joining the line segment of -2 plus 5 and -8 -3 giving brief details?

Points: (-2, 5) and (-8, -3) Midpoint: (-5, 1) Slope: 4/3 Perpendicular slope: -3/4 Use: y-1 = -3/4(x--5) Bisector equation: y = -3/4x-11/4 or as 3x+4y+11 = 0


What is the perpendicular bisector equation joining the points of s 2s and 3s 8s on the Cartesian plane showing work?

Points: (s, 2s) and (3s, 8s) Slope: (8s-2s)/(3s-s) = 6s/2s = 3 Perpendicular slope: -1/3 Midpoint: (s+3s)/2 and (2s+8s)/2 = (2s, 5s) Equation: y-5s = -1/3(x-2s) => 3y-15s = -1(x-2s) => 3y = -x+17x Perpendicular bisector equation in its general form: x+3y-17s = 0


What is a characteristic of a perpendicular bisector?

Given a straight line joining the points A and B, the perpendicular bisector is a straight line that passes through the mid-point of AB and is perpendicular to AB.


What is the equation and its perpendicular bisector equation of the line joining the points of 1 2 and 3 4 showing work?

1 Points: (1, 2) and (3, 4) 2 Slope: (2-4)/(1-3) = 1 3 Perpendicular slope: -1 4 Midpoint: (1+3)/2 and (2+4)/2 = (2, 3) 5 Equation: y-2 = 1(x-1) => y = x+1 6 Bisector equation: y-3 = -1(x-2) => y = -x+5


How do you form an equation for the perpendicular bisector of the line segment joining the points of p q and 7p 3q showing all details of your work?

First find the midpoint the slope and the perpendicular slope of the points of (p, q) and (7p, 3q) Midpoint = (7p+p)/2 and (3q+q)/2 = (4p, 2q) Slope = (3q-q)/(7p-p) = 2q/6p = q/3p Slope of the perpendicular is the negative reciprocal of q/3p which is -3p/q From the above information form an equation for the perpendicular bisector using the straight line formula of y-y1 = m(x-x1) y-2q = -3p/q(x-4p) y-2q = -3px/q+12p2/q y = -3px/q+12p2/q+2q Multiply all terms by q and the perpendicular bisector equation can then be expressed in the form of:- 3px+qy-12p2-2q2 = 0


How do you find the right bisector of a triangle?

For triangle ABC, find the midpoint of side BC. Then, find the slope of side BC and use its negative reciprocal (since the negative reciprocal slope is the slope of the right bisector joining side BC and the opposite vertex). Finally, substitute the midpoint and negative reciprocal slope into the y=mx+b equation to get "b", then write the equation. :)


How do you form an equation for the perpendicular bisector of the line segment joining -2 5 to -8 -3?

First find the midpoint of (-2, 5) and (-8, -3) which is (-5, 1) Then find the slope of (-2, 5) and (-8, -3) which is 4/3 Slope of the perpendicular bisector is the negative reciprocal of 4/3 which is -3/4 Now form an equation of the straight line with a slope of -3/4 passing through the point (-5, 1) using the formula y-y1 = m(x-x1) The equation works out as: 3x+4y+11 = 0


What is the difference between a perpendicular line and a perpendicular bisector?

A perpendicular line is one that is at right angle to another - usually to a horizontal line. A perpendicular bisector is a line which is perpendicular to the line segment joining two identified points and which divides that segment in two.


What is the equation for the perpendicular bisector of the line segment joining the points of 3 5 and 7 7?

y = -2x+16 which can be expressed in the form of 2x+y-16 = 0


What are the values of a and b given that y plus 4x equals 11 is the perpendicular bisector equation of the line joining a 2 to 6 b?

Their values work out as: a = -2 and b = 4


What is the locus of points equidistant from two points?

The perpendicular bisector of the straight line joining the two points.