1/3
The probability of choosing a green marble from this jar would be 6/15. You get this answer by adding up the sum of all the marbles.
There are 15 blue marbles, 8 yellow marbles and 27 red marbles for a total of 50 marbles. Since there are no green marbles in the lot, It is impossible to pull a green marble from the lot. The is no probability whatsoever! "There just ain't no green ones to pull."
Probability of drawing a red marble = 4/16 = 1/4 Probability of drawing not a red marble = 1 - 1/4 = 3/4
1 chance in 10.10 %
A bag contains 2 red marbles, 5 blue marbles, and 4 green marbles. What is the probability that a green marble will be chosen at random.
There are 16 marbles total and 7 green ones, so the probability is 7/16.
The probability of choosing a green marble from this jar would be 6/15. You get this answer by adding up the sum of all the marbles.
1
This is the same as the probability of choosing either a red of a blue marble. There are 5+4 out of 15 ways of doing this. The probability is therefore 9/15 = 3/5.
5:16
The probability is 0.56
The theoretical probability of randomly drawing a green marble can be calculated by dividing the number of green marbles by the total number of marbles in the bag. In this case, there are 12 green marbles out of a total of 5 red marbles + 8 blue marbles + 12 green marbles, which is 25 marbles in total. Therefore, the theoretical probability of drawing a green marble is 12/25 or 48%.
There are 11+10+17+15+3=56 marbles in total. Of those marbles, 11 are blue and 17 are red, so there are 11+17=28 blue and red marbles. Therefore the probability of choosing a blue or red marble is 28/56=.5, or 50%.
There are 15 blue marbles, 8 yellow marbles and 27 red marbles for a total of 50 marbles. Since there are no green marbles in the lot, It is impossible to pull a green marble from the lot. The is no probability whatsoever! "There just ain't no green ones to pull."
The probability of choosing a blue marble is 5 in 15 or 1 in 3. The probability of then choosing a green marble is 5 in 14. (One is missing) Multiply the two probabilities and you get 5 in 42.(P = 0.1190... about 12%).
If one marble is chosen at random, the probability is 6/(4+6+5) = 6/15 = 2/5
If you pick only one marble from the bag, at random, it can be any one of 26 marbles. Out of these, 5 of the marbles are green. Thus, there are 26 possible outcomes out of which 5 are favourable - to the event that the marble is green. Therefore the probability of a green marble is 5/26. The calculations become more complicated if you consider choosing a green marble in several attempt: it depends on whether or not the marbles are replaced before the next one is picked.