If it is a T/F test; probability correct for each question is 0.5. Since there are 4 questions, raise 0.5 to the 4th power; e.g. (0.5)4. So, probability all correct is 0.0625. If a 4 part multiple choice, P(correct) = .25 so raise .25 to the 4th power, or .003906.
The conditional probability is 1/4.
Assuming it is a fair coin, the probability is 1/24 = 1/16.
The probability is 1/4
Probability of each question correct is 1/4 or 0.25. Since there are 5 questions, raise 0.25 to the 5th power or (0.25)5. So, probability all correct is 0.0009765.
If it is a T/F test; probability correct for each question is 0.5. Since there are 4 questions, raise 0.5 to the 4th power; e.g. (0.5)4. So, probability all correct is 0.0625. If a 4 part multiple choice, P(correct) = .25 so raise .25 to the 4th power, or .003906.
The conditional probability is 1/4.
Assuming it is a fair coin, the probability is 1/24 = 1/16.
one out of four
The probability is 146/1296 = 0.1127
The probability is 1/4
Probability of each question correct is 1/4 or 0.25. Since there are 5 questions, raise 0.25 to the 5th power or (0.25)5. So, probability all correct is 0.0009765.
0.54 or 0.0625 or 1/16.
The probability of NOT getting heads is (1/2)4=1/16 Therefore the probability of getting heads is 1-1/16=15/16
Oh, what a happy little question! Let's break it down. The probability of getting heads on a single flip is 1/2, and the probability of getting tails is also 1/2. So, the probability of getting HTTH in that specific order on four flips would be (1/2) * (1/2) * (1/2) * (1/2) = 1/16. Just remember, there are no mistakes, just happy little accidents in probability!
50%
The probability of flipping a fair coin four times and getting four heads is 1 in 16, or 0.0625. That is simply the probability of one head (0.5) raised to the power of 4.