The question is ambiguous. Do you mean √(24*x4) or √24*x4? √(3x) or √3*x? The answer to √(24*x4) / √(3x) = (8x3) = 2x*√(2x)
Answer this question…A. x4 + 2x3 + 9x2 + 4 B. x4 + 4x3 + 9x2 + 4 C. x4 + 2x3 + 9x2 + 4x + 4 D. x4 + 2x3 + 9x2 - 4x + 4
The answer to x4+x3-14x2+4x+6 divided by x-3 is x3+4x2-2x-2
To find the product of ((4x^3)(-2x - 5)), we use the distributive property. Multiplying (4x^3) by each term in the second expression gives us: [ 4x^3 \cdot -2x = -8x^4 ] and [ 4x^3 \cdot -5 = -20x^3. ] Thus, the final product is (-8x^4 - 20x^3).
f(x)=2x+8 g(x)=x4 (g*f)(-3)
The question is ambiguous. Do you mean √(24*x4) or √24*x4? √(3x) or √3*x? The answer to √(24*x4) / √(3x) = (8x3) = 2x*√(2x)
Answer this question…A. x4 + 2x3 + 9x2 + 4 B. x4 + 4x3 + 9x2 + 4 C. x4 + 2x3 + 9x2 + 4x + 4 D. x4 + 2x3 + 9x2 - 4x + 4
(x^2 - 2x + 2)(x^2 + 2x + 2)
The answer to x4+x3-14x2+4x+6 divided by x-3 is x3+4x2-2x-2
2x-3 = 9 2x = 9+3 2x = 12 x = 6
The product is 44
To find the product of ((4x^3)(-2x - 5)), we use the distributive property. Multiplying (4x^3) by each term in the second expression gives us: [ 4x^3 \cdot -2x = -8x^4 ] and [ 4x^3 \cdot -5 = -20x^3. ] Thus, the final product is (-8x^4 - 20x^3).
(x4 - 3)(x4 + 3)
4X + 2x = 1. Where x = 0.166666666666666666666666666666666666666 recurring.
8
1,2,4,5,10,20
580