Pendulums have been used for thousands of years as a time keeping device in various civilizations.
Assuming that it is only displaced by a small angle, a pendulum wall have a period of 2pi*√(L/g) where L is the length of the pendulum and g is the acceeleration due to gravity, normally 9.81m/s².
One of the cool things about pendulums is that if one is made with a length of one meter, it will have a period of 2.00607 seconds, meaning it will take just slightly more than one second to swing from one side to another.
Chat with our AI personalities
A Foucault pendulum is a pendulum with a large length which is free to oscillate in any vertical plane. At the equator, the plane of oscillation remains fixed relative to the earth. Elsewhere, the plane of oscillation rotates, at a speed that is related to the latitude of the location. In Paris, where Foucault's pendulum is located, the plane of the pendulum's oscillation moves at approx 11 degrees per hour. This movement can be used to tell the time.
The longer the length of the pendulum, the longer the time taken for the pendulum to complete 1 oscillation.
A longer pendulum will have a smaller frequency than a shorter pendulum.
The period of a pendulum is affected by the angle created by the swing of the pendulum, the length of the attachment to the mass, and the weight of the mass on the end of the pendulum.
A simple pendulum has one piece that swings. A complex pendulum has at least two swinging parts, attached end to end. A simple pendulum is extremely predictable, while a complex pendulum is virtually impossible to accurately predict.