A Foucault pendulum is a pendulum with a large length which is free to oscillate in any vertical plane.
At the equator, the plane of oscillation remains fixed relative to the earth. Elsewhere, the plane of oscillation rotates, at a speed that is related to the latitude of the location. In Paris, where Foucault's pendulum is located, the plane of the pendulum's oscillation moves at approx 11 degrees per hour. This movement can be used to tell the time.
Chat with our AI personalities
The longer the length of the pendulum, the longer the time taken for the pendulum to complete 1 oscillation.
The longer a pendulum is, the more time it takes a pendulum takes to complete a period of time. If a clock is regulated by a pendulum and it runs fast, you can make it run slower by making the pendulum longer. Likewise, if the clock runs slow, you can make your clock run faster by making the pendulum shorter. (What a pendulum actually does is measure the ratio between time and gravity at a particular location, but that is beyond the scope of this answer.)
Perhaps if either:The length of the pendulum is infiniteThe pendulum is in perfect zero gravity and has no momentumBut in each of those cases, does it really qualify as a pendulum?
the time period of a pendulum is proportional to the square root of length.if the length of the pendulum is increased the time period of the pendulum also gets increased. we know the formula for the time period , from there we can prove that the time period of a pendulum is directly proportional to the effective length of the pendulum. T=2 pi (l\g)^1\2 or, T isproportionalto (l/g)^1/2 or, T is proportional to square root of the effective length.
time period of simple pendulum is dirctly proportional to sqare root of length...