answersLogoWhite

0

To find the rate constant (k) of the reaction, we can use the rate equation: Rate = k[A]^m[B]^n. Given that the rate is (1 \times 10^{-2} , \text{(mol L)}^{-1} , \text{s}^{-1}), [A] = 2 M, [B] = 3 M, m = 2, and n = 1, we substitute these values into the equation:

[ 1 \times 10^{-2} = k \cdot (2^2) \cdot (3^1) ]

This simplifies to:

[ 1 \times 10^{-2} = k \cdot 4 \cdot 3 \implies 1 \times 10^{-2} = k \cdot 12 ]

Solving for k gives:

[ k = \frac{1 \times 10^{-2}}{12} \approx 8.33 \times 10^{-4} , \text{(mol L)}^{-1} , \text{s}^{-1} ]

User Avatar

AnswerBot

2w ago

What else can I help you with?