-784
3 to 7
533 m2/1,372 m3 = 0.3885 per meter (rounded)
To find the ratio of surface area to volume for the sphere, you divide the surface area by the volume. Given that the surface area is 588 and the volume is 1372, the ratio is ( \frac{588}{1372} \approx 0.428 ). Thus, the ratio of surface area to volume for the sphere is approximately 0.428.
The formula for the surface area of a sphere is 4πr² and the formula for the volume is (4/3)πr³, where r is the radius of the sphere. Setting 4πr² equal to 588 and (4/3)πr³ equal to 1372, you can solve for the radius by equating the two expressions and taking the cube root of the result. Once you have the radius, you can calculate the surface area using the formula and divide it by the volume to find the ratio.
To find the ratio of surface area to volume for the sphere, we divide the surface area by the volume. Given the surface area is 588 m² and the volume is 1372 m³, the ratio is calculated as follows: ( \frac{588 \text{ m}^2}{1372 \text{ m}^3} \approx 0.429 \text{ m}^{-1} ). Therefore, the ratio of surface area to volume for the sphere is approximately 0.429 m⁻¹.
3 to 7
533 m2/1,372 m3 = 0.3885 per meter (rounded)
To find the ratio of surface area to volume for the sphere, you divide the surface area by the volume. Given that the surface area is 588 and the volume is 1372, the ratio is ( \frac{588}{1372} \approx 0.428 ). Thus, the ratio of surface area to volume for the sphere is approximately 0.428.
The formula for the surface area of a sphere is 4πr² and the formula for the volume is (4/3)πr³, where r is the radius of the sphere. Setting 4πr² equal to 588 and (4/3)πr³ equal to 1372, you can solve for the radius by equating the two expressions and taking the cube root of the result. Once you have the radius, you can calculate the surface area using the formula and divide it by the volume to find the ratio.
To find the ratio of surface area to volume for the sphere, we divide the surface area by the volume. Given the surface area is 588 m² and the volume is 1372 m³, the ratio is calculated as follows: ( \frac{588 \text{ m}^2}{1372 \text{ m}^3} \approx 0.429 \text{ m}^{-1} ). Therefore, the ratio of surface area to volume for the sphere is approximately 0.429 m⁻¹.
1371+1=1372
1 mile = 1.609 km 1372 km = 1372/1.609 miles
The iceberg is 1372 meters away.
They are: 1372+1372 = 2744
2 * 2 * 7 * 7 * 7 = 1372
1372 = 2*2*7*7*7 1372 has the factors: 1, 2, 4, 7, 14, 28, 49, 98, 196, 343, 686, 1372 The only prime factors are 2 and 7.
1, 2, 4, 7, 14, 28, 49, 98, 196, 343, 686, and 1372