The vertex is either the minimum (very bottom) or maximum (very top) of a parabola.
The vertex of a parabola doe not provide enough information to graph anything - other than the vertex!
right
Above
A quadratic equation in vertex form is expressed as ( y = a(x - h)^2 + k ), where ((h, k)) is the vertex of the parabola. For a parabola with vertex at ((11, -6)), the equation becomes ( y = a(x - 11)^2 - 6 ). The value of (a) determines the direction and width of the parabola. Without additional information about the parabola's shape, (a) can be any non-zero constant.
The vertex of a parabola represents the highest or lowest point depending on the direction it opens. If the parabola opens upwards, the vertex is the lowest point (minimum value). Conversely, if it opens downwards, the vertex is the highest point (maximum value).
The vertex would be the point where both sides of the parabola meet.
To find the value of a in a parabola opening up or down subtract the y-value of the parabola at the vertex from the y-value of the point on the parabola that is one unit to the right of the vertex.
The vertex of a parabola doe not provide enough information to graph anything - other than the vertex!
the vertex of a parabola is the 2 x-intercepts times-ed and then divided by two (if there is only 1 x-intercept then that is the vertex)
The vertex -- the closest point on the parabola to the directrix.
i think that the range and the domain of a parabola is the coordinates of the vertex
right
Above
A quadratic equation in vertex form is expressed as ( y = a(x - h)^2 + k ), where ((h, k)) is the vertex of the parabola. For a parabola with vertex at ((11, -6)), the equation becomes ( y = a(x - 11)^2 - 6 ). The value of (a) determines the direction and width of the parabola. Without additional information about the parabola's shape, (a) can be any non-zero constant.
A parabola's maximum or minimum is its vertex.
The vertex of a parabola represents the highest or lowest point depending on the direction it opens. If the parabola opens upwards, the vertex is the lowest point (minimum value). Conversely, if it opens downwards, the vertex is the highest point (maximum value).
The point on the parabola where the maximum area occurs is at the vertex of the parabola. This is because the vertex represents the maximum or minimum point of a parabolic function.