To rewrite the equation of a parabola in standard form, you need to express it as ( y = a(x - h)^2 + k ) for a vertically oriented parabola or ( x = a(y - k)^2 + h ) for a horizontally oriented parabola. Here, ( (h, k) ) represents the vertex of the parabola, and ( a ) determines its direction and width. You can achieve this by completing the square on the quadratic expression.
The directrix of a parabola can be found using its standard form equation. For a parabola that opens upwards or downwards, given by (y = ax^2 + bx + c), the directrix is located at (y = k - \frac{1}{4p}), where (k) is the vertex's y-coordinate and (p) is the distance from the vertex to the focus. For a parabola that opens sideways, the directrix is given by (x = h - \frac{1}{4p}), where (h) is the vertex's x-coordinate. The value of (p) can be determined based on the coefficients of the quadratic equation.
An equation for a sideways parabola can be expressed in the form ( y^2 = 4px ) for a parabola that opens to the right, or ( y^2 = -4px ) for one that opens to the left. Here, ( p ) represents the distance from the vertex to the focus. The vertex of the parabola is at the origin (0,0), and the axis of symmetry is horizontal. If the vertex is not at the origin, the equation can be adjusted to ( (y-k)^2 = 4p(x-h) ), where ((h, k)) is the vertex.
y=2(x-3)+1
To determine if a parabola opens up or down, look at the coefficient of the quadratic term in its equation, typically in the form (y = ax^2 + bx + c). If the coefficient (a) is positive, the parabola opens upwards; if (a) is negative, it opens downwards. You can also visualize the vertex: if the vertex is the lowest point, it opens up, and if it's the highest point, it opens down.
The graph of a quadratic function is always a parabola. If you put the equation (or function) into vertex form, you can read off the coordinates of the vertex, and you know the shape and orientation (up/down) of the parabola.
The vertex form for a quadratic equation is y=a(x-h)^2+k.
-2
Normally a quadratic equation will graph out into a parabola. The standard form is f(x)=a(x-h)2+k
An equation that when plotted produces a parabola is a quadratic equation of the form y = ax2 + bx + c where a, b and c are constants.
please help
A linear equation has the form of mx + b, while a quadratic equation's form is ax2+bx+c. Also, a linear equation's graph forms a line, while a quadratic equation's graph forms a parabola.
2
y=2(x-3)+1
It is a quadratic equation that normally has two solutions
The vertex form of a quatdratic equation (otherwise called the graphing form) is y=a(x-h)2+k For those of you who don't know what 'h', 'a', and 'k' are, they are parameters. The negative sign in front of the 'h' refers to the opposite of the x coordinate in the vertex. The 'k' refers to the y coordinate in the vertex. 'A' refers to the stretch or compression factor. So, for example, say you have a parabola with a stretch factor of 2 whose vertex coordinates are (-3,4). The equation would be y=2(x+3)2+4 Of course, if a parabola has no stretch/compression factor, there would be no 'a' in the equation. I hope this helped, and good luck!
The difference between standard form and vertex form is the standard form gives the coefficients(a,b,c) of the different powers of x. The vertex form gives the vertex 9hk) of the parabola as part of the equation.