answersLogoWhite

0

If the scalar is

> 1 the resultant vector will be larger and in the same direction.

= 1 the resultant vector will be the same as the original vector.

between 0 and 1 the resultant vector will be smaller and in the same direction.

= 0 the resultant vector will be null.

If the scalar is less than 0, then the pattern will be the same as above except that the direction of the resultant will be reversed.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What is a scalar multiplied by a vector?

A scalar multiplied by a vector involves multiplying each component of the vector by the scalar value. This operation scales the vector's magnitude while retaining its direction if the scalar is positive, or reversing its direction if the scalar is negative. The result is a new vector that has the same direction as the original (or the opposite direction if the scalar is negative) but a different magnitude.


A vector of components ( and minus3 and minus2) is multiplied by the scalar value of -6. What is the magnitude and direction of the resultant vector?

To find the resultant vector when multiplying the vector components (3, -3, -2) by the scalar -6, we perform the scalar multiplication: (-6)(3, -3, -2) = (-18, 18, 12). The magnitude can be calculated using the formula ( \sqrt{(-18)^2 + (18)^2 + (12)^2} ), which equals ( \sqrt{1080} ) or approximately 32.8. The direction of the resultant vector is opposite to the original vector due to the negative scalar, meaning it points in the direction of the vector (-3, 3, 2).


What is the product of two vector quantities?

It depends on the type of product used. A dot or scalar product of two vectors will result in a scalar. A cross or vector product of two vectors will result in a vector.


What is a scalar times a vector?

A scalar times a vector is a vector.


Why work is scalar but product of two vector?

The product of two vectors can be done in two different ways. The result of one way is another vector. The result of the other way is a scalar ... that's why that method is called the "scalar product". The way it's done is (magnitude of one vector) times (magnitude of the other vector) times (cosine of the angle between them).

Related Questions

Multiplying or dividing vectors by scalars results in what?

When multiplying a vector by a scalar, each component of the vector is multiplied by the scalar. This operation changes the magnitude of the vector but not its direction. Similarly, dividing a vector by a scalar involves dividing each component of the vector by the scalar.


What is a scalar multiplied by a vector?

A scalar multiplied by a vector involves multiplying each component of the vector by the scalar value. This operation scales the vector's magnitude while retaining its direction if the scalar is positive, or reversing its direction if the scalar is negative. The result is a new vector that has the same direction as the original (or the opposite direction if the scalar is negative) but a different magnitude.


What is it called when a scalar and a vector are multiplied together?

When a scalar quantity(if it has positive magnitude) is multiplies by a vector quantity the product is another vector quantity with the magnitude as the product of two vectors and the direction and dimensions same as the multiplied vector quantity e.g. MOMENTUM


A vector of components ( and minus3 and minus2) is multiplied by the scalar value of -6. What is the magnitude and direction of the resultant vector?

To find the resultant vector when multiplying the vector components (3, -3, -2) by the scalar -6, we perform the scalar multiplication: (-6)(3, -3, -2) = (-18, 18, 12). The magnitude can be calculated using the formula ( \sqrt{(-18)^2 + (18)^2 + (12)^2} ), which equals ( \sqrt{1080} ) or approximately 32.8. The direction of the resultant vector is opposite to the original vector due to the negative scalar, meaning it points in the direction of the vector (-3, 3, 2).


Multiplying or dividing vectors by scalars results in?

Vectors. A scalar times a vectro is a vector. A vector times a vector is a scalr if the vectros are parallel v1.v2 = scalar. A vector times a vector is a vector if the vectors are perpendicular. Other wise a vectro times a vector is both a scalr and a vector, v1v2 = -v1.v2 + v1xv2 = -v1v2cos(x) + vqv2sin(x). If cos(x) =0 then perpendicular if sin(x)=0 then parallel. In general the product of two vectors is a quaternion the sum of a scalar and a vector. The Universe is composed of quaternions. Science and Physics has failed to appreciate that the numbes of the universe are quaternions, the sum of a scaltr and a vector. Hamilton invented quaternions in 1843.


When does a vector remain unchanged?

only if it is moved parallel to its original direction


What is the product of two vector quantities?

It depends on the type of product used. A dot or scalar product of two vectors will result in a scalar. A cross or vector product of two vectors will result in a vector.


How is the direction of the vectors involved in the definition of work?

A definition of work W: W = ⌠F∙dsWhere F is a force vector that is dot-multiplying (scalar product) the differentialdisplacement vector dS. The result is the work W, a scalar, done by the force thatproduced the displacement. But notice that the scalar product of both vectors willonly consider the force component that is collinear with the displacement vector.


Can a scalar quantity be the product of 2 vector quantities?

No, a scalar quantity cannot be the product of two vector quantities. Scalar quantities have only magnitude, while vector quantities have both magnitude and direction. When two vectors are multiplied, the result is a vector, not a scalar.


How many components have a vector?

It is the other way round - it's the vector that has components.In general, a vector can have one or more components - though a vector with a single component is often called a "scalar" instead - but technically, a scalar is a special case of a vector.


What is scalar addition?

Scalar addition involves adding a scalar quantity to each element of a vector. This is done by adding the scalar to the magnitude of the vector without changing its direction. The result is a new vector that represents the original vector displaced by the magnitude of the scalar in the same direction.


What is a scalar times a vector?

A scalar times a vector is a vector.