answersLogoWhite

0

0.000 000 010 6 in scientific notation is 1.06 x 10-8 .

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

BeauBeau
You're doing better than you think!
Chat with Beau
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
ReneRene
Change my mind. I dare you.
Chat with Rene

Add your answer:

Earn +20 pts
Q: What is the sientific notation of 0.000 000 010 6?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Convert hexadecimal numbers A002B07D into octal numbers?

A002B07D16 -> binary A 1010 0 0000 0 0000 2 0010 B 1011 0 0000 7 0111 D 1101 A002B07D16 = 1010 0000 0000 0010 1011 0000 0111 11012 10 100 000 000 000 101 011 000 001 111 1012 -> octal 010 2 100 4 000 0 000 0 000 0 101 5 011 3 000 0 001 1 111 7 101 5 10 100 000 000 000 101 011 000 001 111 1012 = 240005301758 A002B07D16 = 24 000 530 1758


How do you write 54.01 billion in numerals?

54 010 000 000 or 5.401*1010 in standard form


How is scientific notation related to the floating point representation used by computers?

Floating point numbers are stored in scientific notation using base 2 not base 10.There are a limited number of bits so they are stored to a certain number of significant binary figures.There are various number of bytes (bits) used to store the numbers - the bits being split between the mantissa (the number) and the exponent (the power of 10 (being in the base of the storage - in binary, 10 equals 2 in decimal) by which the mantissa is multiplied to get the binary/decimal point back to where it should be), examples:Single precision (IEEE) uses 4 bytes: 8 bits for the exponent (encoding ±), 1 bit for the sign of the number and 23 bits for the number itself;Double precision (IEEE) uses 8 bytes: 11 bits for the exponent, 1 bit for the sign, 52 bits for the number;The Commodore PET used 5 bytes: 8 bits for the exponent, 1 bit for the sign and 31 bits for the number;The Sinclair QL used 6 bytes: 12 bits for the exponent (stored in 2 bytes, 16 bits, 4 bits of which were unused), 1 bit for the sign and 31 bits for the number.The numbers are stored normalised:In decimal numbers the digit before the decimal point is non-zero, ie one of {1, 2, ..., 9}.In binary numbers, the only non-zero digit is 1, so *every* floating point number in binary (except 0) has a 1 before the binary point; thus the initial 1 (before the binary point) is not stored (it is implicit).The exponent is stored by adding an offset of 2^(bits of exponent - 1), eg with 8 bit exponents it is stored by adding 2^7 = 1000 0000Zero is stored by having an exponent of zero (and mantissa of zero).Example 10 (decimal):10 (decimal) = 1010 in binary → 1.010 × 10^11 (all digits binary) which is stored in single precision as:sign = 0exponent = 1000 0000 + 0000 0011 = 1000 00011mantissa = 010 0000 0000 0000 0000 0000 (the 1 before the binary point is explicit).Example -0.75 (decimal):-0.75 decimal = -0.11 in binary (0.75 = ½ + ¼) → 1.1 × 10^-1 (all digits binary) → single precision:sign = 1exponent = 1000 0000 + (-0000 0001) = 0111 1111mantissa = 100 0000 0000 0000 0000 0000Note 0.1 in decimal is a recurring binary fraction 0.1 (decimal) = 0.0001100110011... in binary which is one reason floating point numbers have rounding issues when dealing with decimal fractions.


How much is 010 of one percent?

Since 010 = 10, 010 of 1% = 10 of 1% = 10% or 0.1


What is thicker .003 or .010?

0.010 is 0.007 thicker than 0.003