A simple pendulum exhibits simple harmonic motion
A simple pendulum has one piece that swings. A complex pendulum has at least two swinging parts, attached end to end. A simple pendulum is extremely predictable, while a complex pendulum is virtually impossible to accurately predict.
applications of simple pendulum
A simple pendulum.
simple pendulum center of mass and center of oscillation are at the same distance.coupled pendulum is having two bobs attached with a spring.
A simple pendulum exhibits simple harmonic motion
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
A compound pendulum is called an equivalent simple pendulum because its motion can be approximated as that of a simple pendulum with the same period. This simplification allows for easier analysis and calculation of its behavior.
A simple pendulum has one piece that swings. A complex pendulum has at least two swinging parts, attached end to end. A simple pendulum is extremely predictable, while a complex pendulum is virtually impossible to accurately predict.
applications of simple pendulum
A simple pendulum.
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
simple pendulum center of mass and center of oscillation are at the same distance.coupled pendulum is having two bobs attached with a spring.
The motion of a simple pendulum will be simple harmonic when the angle of displacement from the vertical is small (less than 10 degrees) and the amplitude is also small.
The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.
You can reduce the frequency of oscillation of a simple pendulum by increasing the length of the pendulum. This will increase the period of the pendulum, resulting in a lower frequency. Alternatively, you can decrease the mass of the pendulum bob, which will also reduce the frequency of oscillation.
no we cannot realize an ideal simple pendulum because for this the string should be weightless and inextendible.