k = 0.1
They are +/- 5*sqrt(2)
Use tangent. Your equation will be tan(slope of hypotenuse) = opposite side / adjacent side. it's easier if you just do A squared plus b squared equals c squared. Then subtitute the numbers gived in.
Equation: x² + y² -6x +4y = 0 Completing the squares: (x-3)² + (y+2)² = 13 Centre of circle: (3, -2) Contact point: (6, -4) Slope of radius: -2/3 Slope of tangent: 3/2 Tangent equation: y - -4 = 3/2(x-6) => 2y - -8 = 3x-18 => 2y = 3x-26 Tangent line equation in its general form: 3x-2y-26 = 0
Circle equation: x^2 +y^2 -8x +4y = 30 Tangent line equation: y = x+4 Centre of circle: (4, -2) Slope of radius: -1 Radius equation: y--2 = -1(x-4) => y = -x+2 Note that this proves that tangent of a circle is always at right angles to its radius
k = 0.1
(2, -2)
They are +/- 5*sqrt(2)
It is (-0.3, 0.1)
Use tangent. Your equation will be tan(slope of hypotenuse) = opposite side / adjacent side. it's easier if you just do A squared plus b squared equals c squared. Then subtitute the numbers gived in.
Equation: x² + y² -6x +4y = 0 Completing the squares: (x-3)² + (y+2)² = 13 Centre of circle: (3, -2) Contact point: (6, -4) Slope of radius: -2/3 Slope of tangent: 3/2 Tangent equation: y - -4 = 3/2(x-6) => 2y - -8 = 3x-18 => 2y = 3x-26 Tangent line equation in its general form: 3x-2y-26 = 0
Circle equation: x^2 +y^2 -8x +4y = 30 Tangent line equation: y = x+4 Centre of circle: (4, -2) Slope of radius: -1 Radius equation: y--2 = -1(x-4) => y = -x+2 Note that this proves that tangent of a circle is always at right angles to its radius
First find the slope of the circle's radius as follows:- Equation of circle: x^2 +10x +y^2 -2y -39 = 0 Completing the squares: (x+5)^2 + (y-1)^2 -25 -1 -39 = 0 So: (x+5)^2 +(y-1)^2 = 65 Centre of circle: (-5, 1) and point of contact (3, 2) Slope of radius: (1-2)/(-5-3) = 1/8 which is perpendicular to the tangent line Slope of tangent line: -8 Tangent equation: y-2 = -8(x-3) => y = -8x+26 Tangent equation in its general form: 8x+y-26 = 0
Circle equation: x^2 +y^2 -8x -16y -209 = 0 Completing the squares: (x-4)^2 +(y-8)^2 = 289 Centre of circle: (4, 8) Radius of circle 17 Slope of radius: 0 Perpendicular tangent slope: 0 Tangent point of contact: (21, 8) Tangent equation: x = 21 passing through (21, 0)
Circle equation: x^2 +y^2 +6x -10y = 0 Completing the squares: (x +3)^2 +(y -5)^2 = 34 Center of circle: (-3, 5) Point of contact: (0, 0) Slope of radius: -5/3 Slope of tangent line: 3/5 Tangent line equation: y = 0.6x
y = -2x + 5 Slope is -2, that is the angle the line makes with the x-axis is such that tangent of that angle is -2 The y-intercept is 5
Circle equation: x^2 +y^2 -8x -16y -209 Completing the squares: (x-4)^2 +(y-8)^2 = 289 Centre of circle: (4, 8) Radius: 17 Slope of radius: 0 Tangent equation line: x = 21 passing through (21, 0)