44,100
To find the smallest positive integer ( n ) such that ( 2n ) is a perfect square, ( 3n ) is a perfect cube, and ( 4n ) is a perfect fourth, we analyze the conditions for each case using prime factorization. Let ( n = 2^a \cdot 3^b \cdot k ), where ( k ) is coprime to 2 and 3. For ( 2n ) to be a perfect square, ( a+1 ) must be even and ( b ) must be even. For ( 3n ) to be a perfect cube, ( a ) must be divisible by 3 and ( b+1 ) must be divisible by 3. For ( 4n ) to be a perfect fourth, ( a+2 ) must be divisible by 4 and ( b ) must be divisible by 4. By solving these conditions simultaneously, the smallest ( n ) that meets all conditions is ( n = 108 ).
324
How about 150*6 = 900 which is a perfect square because 30*30 = 900
divisible by 2
(3x5x7x11)2 =1334025
44,100
It is 49.
44,100
the answer is 144, it is divisible by 1, 4, 9, 16, 36, and 144.
To find the smallest positive integer ( n ) such that ( 2n ) is a perfect square, ( 3n ) is a perfect cube, and ( 4n ) is a perfect fourth, we analyze the conditions for each case using prime factorization. Let ( n = 2^a \cdot 3^b \cdot k ), where ( k ) is coprime to 2 and 3. For ( 2n ) to be a perfect square, ( a+1 ) must be even and ( b ) must be even. For ( 3n ) to be a perfect cube, ( a ) must be divisible by 3 and ( b+1 ) must be divisible by 3. For ( 4n ) to be a perfect fourth, ( a+2 ) must be divisible by 4 and ( b ) must be divisible by 4. By solving these conditions simultaneously, the smallest ( n ) that meets all conditions is ( n = 108 ).
6.
324
Perfect squares are positive. A smallest negative number doesn't exist. The four smallest prime numbers are 2, 3, 5 and 7. The smallest perfect square would have to be 2^2 x 3^2 x 5^2 x 7^2 or 44,100
63= 9* 7. 9 is already a perfect square, so mulitiply by 7. 7 is your answer.
How about 150*6 = 900 which is a perfect square because 30*30 = 900
If the number is one, then it is the smallest positive square.