In analytical geometry, the roots of a parabola are the x-values (if any) for which y = 0.
In the quadratic formula, the discriminant is b2-4ac. If the discriminant is positive, the equation has two real solutions. If it equals zero, the equation has one real solution. If the discriminant is negative, it has two imaginary solutions. This is because you find the square root of the discriminant and add or subtract it from -b and divide the sum or difference by 2a. If the square root is of a positive number, then you get two different solutions, one from adding the discriminant to -b and one from subtracting the discriminant from -b. If the square root is of zero, then it equals zero, and the solution is -b/2a. If the square root is of a negative number, then you have two imaginary solutions because you can't take the square root of a negative number and get a real number. One solution is from subtracting the discriminant from -b and dividing by 2a, and the other is from adding it to -b and dividing by 2a. The parabola on the left has a positive discriminant. The parabola in the middle has a discriminant of zero. The parabola on the right has a negative discriminant.
There are infinitely many of them. They include square root of (4.41) square root of (4.42) square root of (4.43) square root of (4.44) square root of (4.45) square root of (5.3) square root of (5.762) square root of (6) square root of (6.1) square root of (6.2)
A principal square root is any square root that's answer is positive, and a perfect square root is a square root that's answer is an integer.
square root of 20 = square root of 4 * square root of 5. square root of 4 = 2, so your answer is 2 square root of 5.
It is a square root mapping. This is not a function since it is a one-to-many mapping.
In analytical geometry, the roots of a parabola are the x-values (if any) for which y = 0.
You mean, (+/-) sqrt(16) = 4 because - 42 = 16 and + 42 = 16 This graph would be a parabola.
In the quadratic formula, the discriminant is b2-4ac. If the discriminant is positive, the equation has two real solutions. If it equals zero, the equation has one real solution. If the discriminant is negative, it has two imaginary solutions. This is because you find the square root of the discriminant and add or subtract it from -b and divide the sum or difference by 2a. If the square root is of a positive number, then you get two different solutions, one from adding the discriminant to -b and one from subtracting the discriminant from -b. If the square root is of zero, then it equals zero, and the solution is -b/2a. If the square root is of a negative number, then you have two imaginary solutions because you can't take the square root of a negative number and get a real number. One solution is from subtracting the discriminant from -b and dividing by 2a, and the other is from adding it to -b and dividing by 2a. The parabola on the left has a positive discriminant. The parabola in the middle has a discriminant of zero. The parabola on the right has a negative discriminant.
Yes. think of a parabola that curves around the y-axis. an equation like x = square root of (y2 - 9) simply switch the x's and y's in the equation and your parabola opens up around the y-axis and the x-axis respectively
The square root of the square root of 2
Let the coefficient by 'x' Hence its square root is x^(1/2) or x^(0.5) Then the square root again is [x^(1/2)]^(1/2) Third time over {[x^(1/2)]^(1/2)}^(1/2) Now the rules of indices are [x^(n)[^(m) = x^(nm) When terms are 'nested' , multiply together. Also x^(n) X x^(m) = x^(n+m) x^)n) / x^(m) = x^(n-m) However, the first rule (nesting) applies in this case, when you multiply the indices together/ Hence x^(1/2 X 1/2 X 1/2) = x^(1/8) , Which is the 8th root.!!!!!
square root of (2 ) square root of (3 ) square root of (5 ) square root of (6 ) square root of (7 ) square root of (8 ) square root of (9 ) square root of (10 ) " e " " pi "
There are infinitely many of them. They include square root of (4.41) square root of (4.42) square root of (4.43) square root of (4.44) square root of (4.45) square root of (5.3) square root of (5.762) square root of (6) square root of (6.1) square root of (6.2)
It's not a square if it has no root. If a number is a square then, by definition, it MUST have a square root. If it did not it would not be a square.
It works out exactly as: 7 times the square root of 26
square root 2 times square root 3 times square root 8