They are said to solve the differential heat equations by BoubakerBoubaker(1897-1966) as polynomials:
Karem Boubaker, On modified Boubakerpolynomials..., Trends in Appl. Sci. Research, 2 (2007), 540-544. Karem Boubaker et al., Enhancement of pyrolysis spray disposal performance ..., Eur. Phys. J. Appl. Phys., 37 (2007), 105-109. [Link requires a subscription] Hedi Labiadh and Karem Boubaker, A Sturm-Liouville shaped characteristic differential equation ..., Differential Equations and Control Processes, No. 2 (2007). OEIS: A135929
Triangle read by rows: row n gives coefficients of Boubaker polynomial B_n(x) in order of decreasing exponents.
Descartes did not invent polynomials.
Reciprocal polynomials come with a number of connections with their original polynomials
dividing polynomials is just like dividing whole nos..
In algebra polynomials are the equations which can have any number of higher power. Quadratic equations are a type of Polynomials having 2 as the highest power.
Not into rational factors.
Type your answer here... Francesca boubaker is catwomen really!!!
Other polynomials of the same, or lower, order.
they have variable
Reducible polynomials.
P. K. Suetin has written: 'Polynomials orthogonal over a region and Bieberbach polynomials' -- subject(s): Orthogonal polynomials 'Series of Faber polynomials' -- subject(s): Polynomials, Series
In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) are a class of classical orthogonal polynomials.
what is the prosses to multiply polynomials
Descartes did not invent polynomials.
how alike the polynomial and non polynomial
Richard Askey has written: 'Three notes on orthogonal polynomials' -- subject(s): Orthogonal polynomials 'Recurrence relations, continued fractions, and orthogonal polynomials' -- subject(s): Continued fractions, Distribution (Probability theory), Orthogonal polynomials 'Orthogonal polynomials and special functions' -- subject(s): Orthogonal polynomials, Special Functions
Reciprocal polynomials come with a number of connections with their original polynomials
dividing polynomials is just like dividing whole nos..