zero
(in a past paper it asks u to solve this for -180</=theta<180, so I have solved it) Tan theta =-1, so theta = -45. Use CAST diagram to find other values of theta for -180</=theta<180: Theta (in terms of tan) = -ve, other value is in either S or C. But because of boundaries value can only be in S. So other value= 180-45=135. Do the same for sin. Sin theta=2/5 so theta=23.6 CAST diagram, other value in S because theta (in terms of sin)=+ve. So other value=180-23.6=156.4.
The exact value of (\sin 165^\circ) can be calculated using the sine subtraction formula. Since (165^\circ = 180^\circ - 15^\circ), we have: [ \sin 165^\circ = \sin(180^\circ - 15^\circ) = \sin 15^\circ ] The value of (\sin 15^\circ) can be derived from the formula (\sin(45^\circ - 30^\circ)), which gives: [ \sin 15^\circ = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4} ] Thus, (\sin 165^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}).
For tan(180 degrees), this is simply sin(180 degrees)/cos(180 degrees). To find these values, note that 180 degrees is the leftmost point on the unit circle, at y=0, x=-1, so is tan(180 degrees)=0/-1=0. Then adding 15 gives 15.
Any value for which sin(theta) = 0, i.e. theta = N*180, N being an Integer.
cos(125) = cos(180 - 55) = cos(180)*cos(55) + sin(180)*sin(55) = -cos(55) since cos(180) = -1, and sin(180) = 0 So A = 55 degrees.
The sine of 180 degrees is 0. This is because, on the unit circle, the point corresponding to 180 degrees is located at (-1, 0), and the sine value represents the y-coordinate of that point. Therefore, sin(180°) = 0.
cot x = (cos x) / (sin x) cos (x - 180) = cos x cos 180 + sin x sin 180 = - cos x sin (x - 180) = sin x cos 180 - cos x sin 180 = - sin x cot (x - 180) = (cos (x - 180)) / (sin (x - 180)) = (- cos x) / (- sin x) = (cos x) / (sin x) = cot x
For angles greater than 360 degrees, subtract multiples of 360 so that the relevant angle (the remainder) is between 0 and 360 degrees. Then For 90 < x ≤ 180 deg, sin(x) = sin(180-x) For 180 < x ≤ 270 deg, sin(x) = -sin(x-180) For 270 < x ≤ 360 deg, sin(x) = -sin(360-x)
(in a past paper it asks u to solve this for -180</=theta<180, so I have solved it) Tan theta =-1, so theta = -45. Use CAST diagram to find other values of theta for -180</=theta<180: Theta (in terms of tan) = -ve, other value is in either S or C. But because of boundaries value can only be in S. So other value= 180-45=135. Do the same for sin. Sin theta=2/5 so theta=23.6 CAST diagram, other value in S because theta (in terms of sin)=+ve. So other value=180-23.6=156.4.
The sine of 180 degrees is 0. Remember, the sine value on a unit circle is the y-value. If you find f(pi) in the function f(x)=sin(x), you will get zero as an answer.
sin(-pi) = sin(-180) = 0 So the answer is 0
The exact value of (\sin 165^\circ) can be calculated using the sine subtraction formula. Since (165^\circ = 180^\circ - 15^\circ), we have: [ \sin 165^\circ = \sin(180^\circ - 15^\circ) = \sin 15^\circ ] The value of (\sin 15^\circ) can be derived from the formula (\sin(45^\circ - 30^\circ)), which gives: [ \sin 15^\circ = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4} ] Thus, (\sin 165^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}).
The value of sin(1) is 0.
If ø is an obtuse angle then (180 - ø) is an acute angle and: sin ø = sin (180 - ø) cos ø = -cos (180 - ø) tan ø = -tan (180 - ø)
For tan(180 degrees), this is simply sin(180 degrees)/cos(180 degrees). To find these values, note that 180 degrees is the leftmost point on the unit circle, at y=0, x=-1, so is tan(180 degrees)=0/-1=0. Then adding 15 gives 15.
Any value for which sin(theta) = 0, i.e. theta = N*180, N being an Integer.
cos(125) = cos(180 - 55) = cos(180)*cos(55) + sin(180)*sin(55) = -cos(55) since cos(180) = -1, and sin(180) = 0 So A = 55 degrees.