That depends on the base you are using - base 10, base e, or some other base. Any scientific calculator should be able to calculate logarithms both in base 10 and in base e quickly.
log(2) + log(4) = log(2x)log(2 times 4) = log(2x)2 times 4 = 2 times 'x'x = 4
[log2 (x - 3)](log2 5) = 2log2 10 log2 (x - 3) = 2log2 10/log2 5 log2 (x - 3) = 2(log 10/log 2)/(log5/log 2) log2 (x - 3) = 2(log 10/log 5) log2 (x - 3) = 2(1/log 5) log2 (x - 3) = 2/log 5 x - 3 = 22/log x = 3 + 22/log 5
log x + 2 = log 9 log x - log 9 = -2 log (x/9) = -2 x/9 = 10^(-2) x/9 = 1/10^2 x/9 = 1/100 x= 9/100 x=.09
Due to the rubbish browser that we are compelled to use, it is not possible to use any super or subscripts so here goes, with things spelled out in detail: log to base 2a of 2b = log to base a of 2b/log to base a of 2a = [(log to base a of 2) + (log to base a of b)] / [(log to base a of 2) + (log to base a of a)] = [(log to base a of 2) + (log to base a of b)] / [(log to base a of 2) + 1]
The expression ( \log \left( \frac{x^2 \cdot y^3}{z^4} \right) ) can be simplified using logarithmic properties. It can be rewritten as ( \log(x^2) + \log(y^3) - \log(z^4) ). Further simplifying each term gives ( 2 \log(x) + 3 \log(y) - 4 \log(z) ). Thus, the final expression is ( 2 \log(x) + 3 \log(y) - 4 \log(z) ).
1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000
to create volue
log(x) + log(2) = log(2)Subtract log(2) from each side:log(x) = 0x = 100 = 1
log(2) + log(4) = log(2x)log(2 times 4) = log(2x)2 times 4 = 2 times 'x'x = 4
1
3^(-2x + 2) = 81? log(3^(-2x + 2)) = log(81) (-2x+2)log(3) = log(81) -2x = log(81)/log(3) - 2 x = (-1/2)(log(81)/log(3)) + 1
Less than 50 cents.
[log2 (x - 3)](log2 5) = 2log2 10 log2 (x - 3) = 2log2 10/log2 5 log2 (x - 3) = 2(log 10/log 2)/(log5/log 2) log2 (x - 3) = 2(log 10/log 5) log2 (x - 3) = 2(1/log 5) log2 (x - 3) = 2/log 5 x - 3 = 22/log x = 3 + 22/log 5
-2
log(36) = 1.5563To solve this problem without using a scientific calculator, factor 36 into 2*2*3*3, and use the formula:log(a*b) = log(a) + log(b)So, in this case:log(36) = log(2) + log(2) + log(3) + log(3) = 0.3010 + 0.3010 + 0.4772 + 0.4772 = 1.5564 (slight rounding error)
log x + 2 = log 9 log x - log 9 = -2 log (x/9) = -2 x/9 = 10^(-2) x/9 = 1/10^2 x/9 = 1/100 x= 9/100 x=.09
log base 2 of [x/(x - 23)]