answersLogoWhite

0

Wavelength = (speed) / (frequency) = (340) / (20,000) = 0.017 meter = 1.7 centimeter

User Avatar

Wiki User

15y ago

What else can I help you with?

Related Questions

The speed of sound in water is 1430 meters per second Find the wavelength of a sound with a frequency of 286 Hz traveling through the water?

The formula to calculate wavelength is: wavelength = speed of sound / frequency. Plugging in the values: wavelength = 1430 m/s / 286 Hz = 5 meters. Therefore, the wavelength of the sound wave traveling through the water is 5 meters.


What is the wavelength of a sound made by a violin string that has a frequency of 640 Hz if the sound is traveling at 350 meters per second?

Wavelength = speed/frequency = 350/640 = 54.7 centimeters (rounded)


The speed of sound in water is 1430 meters per second.Find the wavelength of a sound with a frequency of 286 Hz traveling through the water?

The formula to calculate wavelength is wavelength = speed of sound / frequency. Plugging in the values, we get wavelength = 1430 m/s / 286 Hz = 5 meters. Therefore, the wavelength of the sound wave traveling through water is 5 meters.


The speed of sound in water is 1430 ms Find the wavelength of a sound with a frequency of 286 Hz traveling through the water?

To find the wavelength, you can use the formula: wavelength = speed of sound / frequency. Plugging in the values, wavelength = 1430 m/s / 286 Hz = 5 meters. Therefore, the wavelength of the sound traveling through the water is 5 meters.


What is the wavelength of 250Hz?

The wavelength of a 250 Hz sound wave in air is approximately 1.4 meters. Wavelength is calculated by dividing the speed of sound in air (about 343 meters per second) by the frequency of the wave.


The speed of sound in water is 1430 meters per second What is the wavelength of a sound with a frequency of 286 Hz traveling through the water?

The formula for speed is velocity= wavelength x frequencyIf the speed of sound in water is 1430m/s you would replace that as the velocity.1430= wavelength x frequencyFrequency is 286 Hz, therefore you would replace that for the frequency in the equation.1430= wavelength x 286Now you would divide 1430 by 236, in order to get the wavelength alone.1430/286= wavelength.So the wavelength is 5 m


What is the wavelength of a wood with 30kHz frequency?

The wavelength of a sound wave can be calculated using the formula: wavelength = speed of sound / frequency. The speed of sound in air is approximately 343 meters per second. Therefore, for a frequency of 30 kHz (30,000 Hz), the wavelength would be approximately 11.43 meters.


What is the wavelength if the frequency of sound equals 880 Hz?

That would also depend on the speed. Note that sound can go at quite different speeds, depending on the medium and the temperature. Use the formula speed (of sound) = frequency x wavelength. Solving for wavelength: wavelength = speed / frequency. If the speed is in meters / second, and the frequency in Hertz, then the wavelength will be in meters.


What is the wavelength of a 25hz sine wave?

The wavelength of a 25Hz sine wave can be calculated using the formula: wavelength = speed of sound / frequency. Assuming the speed of sound is approximately 343 meters per second, the wavelength of a 25Hz sine wave would be around 13.72 meters.


What is the wavelength of a sound whose frequency is 50 Hz?

It depends on the speed of sound considered for the situation, as sound can travel at different speeds depending on the temperature of the air, its density, composition, etc. For all types of waves (sound waves included), the wavelength is equal to the speed of the wave, divided by its frequency. So, if you consider the speed of sound to be 330 m/s, the wavelength in question would be equal to 330/50, or 6.6 meters. If you consider the speed to be 340 m/s, the wavelength would be 6.8 meters.


What is the wavelength of a 1000 Hz wave?

The wavelength of a 1000 Hz wave in air is approximately 0.34 meters. This can be calculated using the formula wavelength = speed of sound / frequency, where the speed of sound in air at room temperature is approximately 343 meters per second.


Find the wavelength of a sound with a frequency of 286 Hz traveling through the water?

The speed of sound in water is approximately 1482 m/s. To find the wavelength, you can use the formula: wavelength = speed of sound / frequency. Thus, the wavelength of a sound with a frequency of 286 Hz traveling through water would be approximately 5.18 meters.