To solve for the quartile deviation, first calculate the first quartile (Q1) and the third quartile (Q3) of your data set. The quartile deviation is then found using the formula: ( \text{Quartile Deviation} = \frac{Q3 - Q1}{2} ). This value represents the spread of the middle 50% of your data, providing a measure of variability.
coefficient of quartile deviation is = (q3-q1)/(q3+q1)
Another name for the third quartile of a data set is the 75th percentile. It represents the value below which 75% of the data points fall, indicating the upper range of the data distribution. The third quartile is often denoted as Q3.
In a dataset, the interquartile range (IQR), which is the range between the first quartile (Q1) and the third quartile (Q3), contains 50% of the data. This means that 25% of the data lies below Q1, 50% lies between Q1 and Q3, and another 25% lies above Q3. Therefore, the percentage of data that lies between Q1 and Q3 is 50%.
(q3-q1)/2
coefficient of quartile deviation: (Q3-Q1)/(Q3+Q1)
first quartile (Q1) : Total number of term(N)/4 = Nth term third quartile (Q3): 3 x (N)/4th term
Step 1: Find the upper quartile, Q3.Step 2: Find the lower quartile: Q1.Step 3: Calculate IQR = Q3 - Q1.Step 1: Find the upper quartile, Q3.Step 2: Find the lower quartile: Q1.Step 3: Calculate IQR = Q3 - Q1.Step 1: Find the upper quartile, Q3.Step 2: Find the lower quartile: Q1.Step 3: Calculate IQR = Q3 - Q1.Step 1: Find the upper quartile, Q3.Step 2: Find the lower quartile: Q1.Step 3: Calculate IQR = Q3 - Q1.
coefficient of quartile deviation is = (q3-q1)/(q3+q1)
242 is the first quartile. 347 is the third quartile.
Q3-q1
(q3-q1)/2
6,6,9,5,8,9,6,7,8,8,6,5,5,6,8,5,7,7,8,6,5,9,10,14,5,8,5,8,10,10,7,7,7,8,6,6,7,5,7,8,8,5,6,6,7,7,7,6,6,9
To find the interquartile range (IQR) of a number set, first, arrange the data in ascending order. Next, identify the first quartile (Q1), which is the median of the lower half of the data, and the third quartile (Q3), the median of the upper half. Finally, subtract Q1 from Q3 (IQR = Q3 - Q1) to determine the range of the middle 50% of the data.
(q3-q1)/2
A quartile divides a distribution into four equal parts, each containing 25% of the data. The first quartile (Q1) represents the value below which 25% of the data fall, the second quartile (Q2) is the median, and the third quartile (Q3) is the value below which 75% of the data fall.
The interquartile range (IQR) in a box plot represents the range of values between the first quartile (Q1) and the third quartile (Q3). It is calculated by subtracting Q1 from Q3 (IQR = Q3 - Q1) and indicates the middle 50% of the data, providing a measure of statistical dispersion. The IQR is useful for identifying outliers and understanding the spread of the data. In a box plot, it is visually represented by the length of the box itself.