It was the medieval Persian mathematician, Muhammad ibn Mūsā al-Khwārizmī, who published in 830, the book Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala. The al-ğabr resulted in the term algebra.
Chat with our AI personalities
In 9c the a Persian mathematician named Abu Jafar Muhammad ibm Mus al-Khwarizmi wrote a book called "Kitab al-Jabr wal-Muqabala". While there is still some disagreement about the exact meanings on the arabic words, al-Jabr (or al-Gebr) can be loosely translated as reintegration and completion, while muqabala is reduction or balancing. The book was the first systematic treatise on solving linear and quadratic equations. Al-jabr gave rise to Algebra.
The Fibonacci sequence is named after Italian mathematician Leonardo of Pisa, known as Fibonacci. His 1202 book Liber Abaci introduced the sequence to Western European mathematics, although the sequence had been described earlier as Virahankanumbers in Indian mathematics.
Carl Friedrich Gauss contributed to both mathematics and science. He gave people more insight into the relationship between numbers and helped in the understanding of Algebra.
Bhāskara was a 7th century Indian mathematician, who was apparently the first to write numbers in the Hindu-Arabic decimal system with a circle for the zero, and who gave a unique and remarkable rational approximation of the sine function in his commentary on Aryabhata's work.
Bhaskara (1114 A.D. -1185 A.D.) or Bhaskaracharaya is the most well known ancient Indian mathematician. He was born in 1114 A.D. at Bijjada Bida (Bijapur, Karnataka) in the Sahyadari Hills. He was the first to declare that any number divided by zero is infinity and that the sum of any number and infinity is also infinity. He is famous for his book Siddhanta Siromani (1150 A.D.). It is divided into four sections -Leelavati (a book on arithmetic), Bijaganita (algebra), Goladhayaya (chapter on sphere -celestial globe), and Grahaganita (mathematics of the planets). Leelavati contains many interesting problems and was a very popular text book. Bhaskara introduced chakrawal, or the cyclic method, to solve algebraic equations. Six centuries later, European mathematicians like Galois, Euler and Lagrange rediscovered this method and called it "inverse cyclic". Bhaskara can also be called the founder of differential calculus. He gave an example of what is now called "differential coefficient" and the basic idea of what is now called "Rolle's theorem". Unfortunately, later Indian mathematicians did not take any notice of this. Five centuries later, Newton and Leibniz developed this subject. As an astronomer, Bhaskara is renowned for his concept of Tatkalikagati (instantaneous motion). Aryabhata (475 A.D. -550 A.D.) is the first well known Indian mathematician. Born in Kerala, he completed his studies at the university of Nalanda. In the section Ganita (calculations) of his astronomical treatise Aryabhatiya (499 A.D.), he made the fundamental advance in finding the lengths of chords of circles, by using the half chord rather than the full chord method used by Greeks. He gave the value of as 3.1416, claiming, for the first time, that it was an approximation. (He gave it in the form that the approximate circumference of a circle of diameter 20000 is 62832.) He also gave methods for extracting square roots, summing arithmetic series, solving indeterminate equations of the type ax -by = c, and also gave what later came to be known as the table of Sines. He also wrote a text book for astronomical calculations, Aryabhatasiddhanta. Even today, this data is used in preparing Hindu calendars (Panchangs). In recognition to his contributions to astronomy and mathematics, India's first satellite was named Aryabhata.