1-2-3
Use the rules of divisibility
or use Excel:336133621683112484567.2656748842937.333333331033.61130.5454545512281325.8461538514241522.416211719.764705881818.666666671917.684210532016.821162215.272727272314.6086956524142513.442612.923076922712.4444444428122911.58620693011.23110.838709683210.53310.18181818349.882352941359.6369.333333333379.081081081388.842105263398.615384615408.4418.195121951428437.813953488447.636363636457.466666667467.304347826477.14893617487496.857142857506.72516.588235294526.461538462536.339622642546.222222222556.109090909566575.894736842585.793103448595.694915254605.6615.508196721625.419354839635.333333333645.25655.169230769665.090909091675.014925373684.941176471694.869565217704.8714.732394366724.666666667734.602739726744.540540541754.48764.421052632774.363636364784.307692308794.253164557804.2814.148148148824.097560976834.048192771844853.952941176863.906976744873.862068966883.818181818893.775280899903.733333333913.692307692923.652173913933.612903226943.574468085953.536842105963.5973.463917526983.428571429993.3939393941003.361013.3267326731023.2941176471033.2621359221043.2307692311053.21063.1698113211073.1401869161083.1111111111093.0825688071103.0545454551113.02702702711231132.9734513271142.9473684211152.921739131162.8965517241172.8717948721182.8474576271192.8235294121202.81212.7768595041222.7540983611232.7317073171242.7096774191252.6881262.6666666671272.6456692911282.6251292.6046511631302.5846153851312.5648854961322.5454545451332.5263157891342.5074626871352.4888888891362.4705882351372.4525547451382.4347826091392.4172661871402.41412.3829787231422.3661971831432.349650351442.3333333331452.3172413791462.3013698631472.2857142861482.270270271492.2550335571502.241512.2251655631522.2105263161532.1960784311542.1818181821552.1677419351562.1538461541572.1401273891582.1265822781592.1132075471602.11612.0869565221622.0740740741632.0613496931642.0487804881652.0363636361662.0240963861672.01197604816821691.988165681701.9764705881711.9649122811721.9534883721731.9421965321741.9310344831751.921761.9090909091771.8983050851781.8876404491791.8770949721801.8666666671811.8563535911821.8461538461831.8360655741841.8260869571851.8162162161861.8064516131871.7967914441881.7872340431891.7777777781901.7684210531911.7591623041921.751931.7409326421941.7319587631951.7230769231961.7142857141971.7055837561981.6969696971991.6884422112001.682011.6716417912021.6633663372031.6551724142041.6470588242051.639024392061.6310679612071.6231884062081.6153846152091.6076555022101.62111.5924170622121.584905662131.5774647892141.5700934582151.5627906982161.5555555562171.5483870972181.5412844042191.5342465752201.5272727272211.5203619912221.5135135142231.5067264572241.52251.4933333332261.4867256642271.4801762112281.4736842112291.4672489082301.4608695652311.4545454552321.4482758622331.4420600862341.4358974362351.4297872342361.4237288142371.4177215192381.4117647062391.4058577412401.42411.3941908712421.3884297522431.3827160492441.377049182451.3714285712461.3658536592471.3603238872481.354838712491.349397592501.3442511.3386454182521.3333333332531.3280632412541.3228346462551.3176470592561.31252571.3073929962581.3023255812591.2972972972601.2923076922611.2873563222621.2824427482631.277566542641.2727272732651.2679245282661.2631578952671.2584269662681.2537313432691.2490706322701.2444444442711.2398523992721.2352941182731.2307692312741.2262773722751.2218181822761.2173913042771.212996392781.2086330942791.2043010752801.22811.1957295372821.1914893622831.1872791522841.1830985922851.1789473682861.1748251752871.1707317072881.1666666672891.1626297582901.158620692911.1546391752921.1506849322931.1467576792941.1428571432951.1389830512961.1351351352971.1313131312981.1275167792991.1237458193001.123011.116279073021.1125827813031.1089108913041.1052631583051.1016393443061.0980392163071.0944625413081.0909090913091.0873786413101.0838709683111.0803858523121.0769230773131.0734824283141.0700636943151.0666666673161.0632911393171.0599369093181.0566037743191.0532915363201.053211.0467289723221.0434782613231.0402476783241.0370370373251.0338461543261.0306748473271.0275229363281.0243902443291.0212765963301.0181818183311.015105743321.0120481933331.0090090093341.0059880243351.0029850753361
24 times 14 equals 336 48 times 7 equals 336 there is an infinite number of ways to get to 336. definitely when you include imaginary numbers
37
Your answer is 16 & 21 21 - 16 = 5 21 * 16 = 336
The two positive whole-numbers that go into 672 are: 1, 2, 3, 4, 6, 8, 12, 24, 28, 56, 84, 112, 168, 224, 336, and 672 .
Odd numbers end in 1, 3, 5, 7, and 9, and are not divisible by 2. Since 336 is divisible by 2, (336/2 = 168) it is an even number.
48,96,144 ect.
The product of prime numbers for 336 is:2x2x2x2x3x7This is because all of that sum equals the total of 3362x2x2x3x7=336
111 + 112 + 113 = 336
How about: 336
Every number is divisible by any non-zero number.Any element of the set of numbers of the form 336*k, where k is an integer, is evenly divisible.
Twenty of them.
24 times 14 equals 336 48 times 7 equals 336 there is an infinite number of ways to get to 336. definitely when you include imaginary numbers
37
Your answer is 16 & 21 21 - 16 = 5 21 * 16 = 336
336 ÷ 16 = 21
336 ÷ 3 = 112
336 and 48