to multiplya polynomial by a monomial,use the distributive property and then combine like terms.
Polynomials are not closed under division because dividing one polynomial by another can result in a quotient that is not a polynomial. Specifically, when a polynomial is divided by another polynomial of a higher degree, the result can be a rational function, which includes terms with variables in the denominator. For example, dividing (x^2) by (x) gives (x), a polynomial, but dividing (x) by (x^2) results in (\frac{1}{x}), which is not a polynomial. Thus, the closure property does not hold for polynomial division.
To multiply two polynomials, you apply the distributive property, also known as the FOIL method for binomials. Each term in the first polynomial is multiplied by each term in the second polynomial. After performing all the multiplications, you combine like terms to simplify the resulting polynomial. Finally, ensure that the polynomial is written in standard form, with terms ordered by decreasing degree.
You just multiply the term to the polynomials and you combine lije terms
No you can not use subtraction or division in the associative property.
Closure
It is called the property of "closure".
That property is called CLOSURE.
Clouser
to multiplya polynomial by a monomial,use the distributive property and then combine like terms.
If you want to multiply the monomial by the polynomial, yes. In that case, you have to multiply the monomial by every term of the polynomial. For example: a (b + c + d) = ab + ac + ad More generally, when you multiply together two polynomials, you have to multiply each term in one polynomial by each term of the other polynomial; for example: (a + b)(c + d) = ac + ad + bc + bd All this can be derived from the distributive property (just apply the distributive property repeatedly).
Multiplication can be the first step when using the distributive property with subtraction. The distributive law of multiplication over subtraction is that the difference of the subtraction problem and then multiply, or multiply each individual products and then find the difference.
You just multiply the term to the polynomials and you combine lije terms
No you can not use subtraction or division in the associative property.
yes it does work for subtraction
Distributive Property
Subtraction is not an identity property but it does have an identity property. The identity is 0 and each number is its own inverse with respect to subtraction. However, this is effectively the same as the inverse property of addition so there is no real need to define it as a separate property.