A transformation that does not produce a congruent image is a dilation. While dilations change the size of a figure, they maintain the shape, meaning the resulting image is similar but not congruent to the original. In contrast, transformations such as translations, rotations, and reflections preserve both size and shape, resulting in congruent images.
The object and its image are congruent.
The transformation in which the preimage and its image are congruent is called a rigid transformation or isometry. This type of transformation preserves distances and angles, meaning that the shape and size of the figure remain unchanged. Common examples include translations, rotations, and reflections. As a result, the original figure and its transformed version are congruent.
A figure is always congruent to its image under transformation because congruence means that the two figures have the same shape and size. Transformations such as translations, rotations, and reflections preserve the lengths of sides and the measures of angles, ensuring that the original figure and its image maintain their geometric properties. Therefore, any transformation applied will result in an image that is congruent to the original figure.
A transformation that is not a congruent image is a dilation. Unlike rigid transformations such as translations, rotations, and reflections that preserve shape and size, dilation changes the size of a figure while maintaining its shape. This means that the original figure and the dilated figure are similar, but not congruent, as their dimensions differ.
A transformation that does not produce a congruent image is a dilation. While dilations change the size of a figure, they maintain the shape, meaning the resulting image is similar but not congruent to the original. In contrast, transformations such as translations, rotations, and reflections preserve both size and shape, resulting in congruent images.
A dilation (or scaling) is a transformation that does not always result in an image that is congruent to the original figure. While translations, rotations, and reflections always produce congruent figures, dilations change the size of the figure, which means the image may be similar to, but not congruent with, the original figure.
isometry
Dilation - the image created is not congruent to the pre-image
The identity transformation.
The object and its image are congruent.
The transformation in which the preimage and its image are congruent is called a rigid transformation or isometry. This type of transformation preserves distances and angles, meaning that the shape and size of the figure remain unchanged. Common examples include translations, rotations, and reflections. As a result, the original figure and its transformed version are congruent.
Congruent in all three cases.
A transformation that is not a congruent image is a dilation. Unlike rigid transformations such as translations, rotations, and reflections that preserve shape and size, dilation changes the size of a figure while maintaining its shape. This means that the original figure and the dilated figure are similar, but not congruent, as their dimensions differ.
An enlargement but the angle sizes will remain the same.
An enlargement transformation
True. An isometry is a transformation that preserves distances and angles, meaning that the preimage and image are congruent. Examples of isometries include translations, rotations, and reflections, all of which maintain the shape and size of geometric figures.