No, it is not.
at first the first person to solve the quadratic equation is from the middle kingdom of Egypt. Greeks were also able to solve the quadratic equation but that was on the unproper way. Greeks were able to solve the quadratic equation by geometric method or equlid's method. equlid's method contains only three quadratic equation. dipohantus have also solved the quadratic equations but he have solved by giving only two roots any they both were only of positive signs.After that arbhatya also gave the two formulas for quadratic equation but the bentaguptahave only accepted only one of them after theat some of the Indian mathematican have also solved the quadratic equation who gave the proper definations and formula and in this way quadratic equation have been formed. Prabesh Regmi Kanjirowa National School
First, write the equation in standard form, i.e., put zero on the right. Then, depending on the case, you may have the following options:Factor the polynomialComplete the squareUse the quadratic formula
First rewrite the quadratic equation in the form: ax2 + bx + c = 0 where a , b and c are constant coefficients. Clearly, a is not = 0 for if it were then you would have a linear equation and not a quadratic. Then the roots of the quadratic are: x = [-b +/- sqrt(b2 - 4ac)]/2a where using the + and - values of the square root result in two solutions.
Translate to what? I assume you need help interpreting it. The quadratic equation is used to solve the quadratic polynomial, ax2 + bx + c = 0, where a, b, and c can be any number. For example, if you need to solve the equation x2 = 5 + 2x, you first convert it into the standard form mentioned above: x2 - 2x - 5 = 0. Now find the coefficients, a, b, and c. In this case, a = 1, b = -2, c = -5. Finally, you replace these coefficients in the quadratic equation. The "plus-minus" sign simply means that the quadratic equation is a shortcut for two equations - one in which you add, the other in which you subtract, the terms at the top. The solutions given by the quadratic equation are values of "x" that satisfy the equation.
take the square root of both sides.
No, it is not.
The first step is to show an example of the quadratic equation in question because the formula given is only the general form of a quadratic equation.
at first the first person to solve the quadratic equation is from the middle kingdom of Egypt. Greeks were also able to solve the quadratic equation but that was on the unproper way. Greeks were able to solve the quadratic equation by geometric method or equlid's method. equlid's method contains only three quadratic equation. dipohantus have also solved the quadratic equations but he have solved by giving only two roots any they both were only of positive signs.After that arbhatya also gave the two formulas for quadratic equation but the bentaguptahave only accepted only one of them after theat some of the Indian mathematican have also solved the quadratic equation who gave the proper definations and formula and in this way quadratic equation have been formed. Prabesh Regmi Kanjirowa National School
its easy first,xczxczxczxczxc....ERROR..vxbdxv
1st = The quadratic term. 2nd = The linear term. 3rd = The constant term.
In general, there are two steps in solving a given quadratic equation in standard form ax^2 + bx + c = 0. If a = 1, the process is much simpler. The first step is making sure that the equation can be factored? How? In general, it is hard to know in advance if a quadratic equation is factorable. I suggest that you use first the new Diagonal Sum Method to solve the equation. It is fast and convenient and can directly give the 2 roots in the form of 2 fractions. without having to factor the equation. If this method fails, then you can conclude that the equation is not factorable, and consequently, the quadratic formula must be used. See book titled:" New methods for solving quadratic equations and inequalities" (Trafford Publishing 2009) The second step is solving the equation by the quadratic formula. This book also introduces a new improved quadratic formula, that is easier to remember by relating the formula to the x-intercepts with the parabola graph of the quadratic function.
First, write the equation in standard form, i.e., put zero on the right. Then, depending on the case, you may have the following options:Factor the polynomialComplete the squareUse the quadratic formula
First rewrite the quadratic equation in the form: ax2 + bx + c = 0 where a , b and c are constant coefficients. Clearly, a is not = 0 for if it were then you would have a linear equation and not a quadratic. Then the roots of the quadratic are: x = [-b +/- sqrt(b2 - 4ac)]/2a where using the + and - values of the square root result in two solutions.
Translate to what? I assume you need help interpreting it. The quadratic equation is used to solve the quadratic polynomial, ax2 + bx + c = 0, where a, b, and c can be any number. For example, if you need to solve the equation x2 = 5 + 2x, you first convert it into the standard form mentioned above: x2 - 2x - 5 = 0. Now find the coefficients, a, b, and c. In this case, a = 1, b = -2, c = -5. Finally, you replace these coefficients in the quadratic equation. The "plus-minus" sign simply means that the quadratic equation is a shortcut for two equations - one in which you add, the other in which you subtract, the terms at the top. The solutions given by the quadratic equation are values of "x" that satisfy the equation.
No. A quadratic equation always has a second derivative that is a constant. For example -3x2 + 10x - 2 first derivative -6x + 10 second derivative -6
A quadratic equation is any type of equation that can be represented as ax2 + bx + c. Example: x2 - 20x + 91 = 0. (a, b, c are known. They are the coefficients.) The coefficient of x2 is always a here. In this case, 1. The coefficient of x = b. In this case -20 (remember it's minus not plus). C is the constant. In this case that is 91. The quadratic formula is a straightforward (though it may seem complicated at first) formula which can solve any quadratic equation. http://bit.ly/1bBARRN There you have an image of the formula.