A cubic.
When graphed, a function has any shape so that all vertical lines will cross the graph in at most one point. A relation does not have this condition. One or more vertical lines may (not must) pass thru a relation in more points.
A quadratic function can only have either a maximum or a minimum point, not both. The shape of the graph, which is a parabola, determines this: if the parabola opens upwards (the coefficient of the (x^2) term is positive), it has a minimum point; if it opens downwards (the coefficient is negative), it has a maximum point. Therefore, a quadratic function cannot exhibit both extreme values simultaneously.
Square
y = ax2 + c is a parabola, c is the y intercept of the parabola. It also happens to be the max/min of the function depending if a is positive or negative.
A quadratic function is a function that can be expressed in the form f(x) = ax^2 + bx + c, where a, b, and c are constants and a is not equal to 0. This function represents a parabolic shape when graphed.
Cardioid
Lemniscate
A parabola
Rose with 3 petals
A cubic.
The St. Louis Arch is in the shape of a hyperbolic cosine function It is often thought that it is in the shape of a parabola, which would have a quadratic function of y = a(x-h)^2 + k, where the vertex is h, k.
The graph of a quadratic equation has the shape of a parabola.
The graph of a quadratic function is always a parabola. If you put the equation (or function) into vertex form, you can read off the coordinates of the vertex, and you know the shape and orientation (up/down) of the parabola.
When graphed, a function has any shape so that all vertical lines will cross the graph in at most one point. A relation does not have this condition. One or more vertical lines may (not must) pass thru a relation in more points.
A quadratic function can only have either a maximum or a minimum point, not both. The shape of the graph, which is a parabola, determines this: if the parabola opens upwards (the coefficient of the (x^2) term is positive), it has a minimum point; if it opens downwards (the coefficient is negative), it has a maximum point. Therefore, a quadratic function cannot exhibit both extreme values simultaneously.
Square