Yes.
No, it indicates an extremely strong positive correlation.
One common example of a correlation method is Pearson's correlation coefficient, which measures the linear relationship between two continuous variables. For instance, researchers might use this method to analyze the correlation between hours studied and exam scores among students. A positive value close to +1 indicates a strong positive correlation, while a value close to -1 indicates a strong negative correlation. This method helps in understanding how changes in one variable may relate to changes in another.
No. If the correlation coefficient is close to 1 or -1, then the two variables have a high degree of statistical linear correlation. See the related link, particularly the graphs which illustrate correlation.
A correlation coefficient is a value between -1 and 1 that shows how close of a good fit the regression line is. For example a regular line has a correlation coefficient of 1. A regression is a best fit and therefore has a correlation coefficient close to one. the closer to one the more accurate the line is to a non regression line.
when the points on the graph are close to each other;)
No, it indicates an extremely strong positive correlation.
This is referred to as correlation, which quantifies the strength and direction of the relationship between two variables. The correlation coefficient can range from -1 to 1, where values closer to 1 indicate a strong positive relationship, values close to -1 indicate a strong negative relationship, and a value of 0 indicates no relationship.
It is easy to find the correlation. First you see how far apart the dots are. if they are going UP like this / <---- it means its a positive correlation. if its like this \ <---- its a negative correlation. if its everywhere its a neutral (although they almost never do them in tests). To find out the strength is your opinion. If alot are grouped together almost making a line its a Strong correlation. Then you decide if its a Strong or Weak correlation depending on how close together the dots are. So put them together in a 1 mark question like::::it is a Strong Positive Correlation
One common example of a correlation method is Pearson's correlation coefficient, which measures the linear relationship between two continuous variables. For instance, researchers might use this method to analyze the correlation between hours studied and exam scores among students. A positive value close to +1 indicates a strong positive correlation, while a value close to -1 indicates a strong negative correlation. This method helps in understanding how changes in one variable may relate to changes in another.
Pearson's Product Moment Correlation Coefficient indicates how strong the relationship between variables is. A PMCC of zero or very close would mean a very weak correlation. A PMCC of around 1 means a strong correlation.
A strong correlation in psychology refers to a relationship between two variables where they tend to change together in a consistent and predictable manner. This means that as one variable increases or decreases, the other variable also increases or decreases. Strong correlations are typically indicated by a correlation coefficient close to +1 or -1.
It is a measure of the extent to which a linear change in one quantity is accompanied by a linear change in the other quantity. Note that only linear changes are measured and that there is no causality.
You can find examples by typing it in to Google. Weak positive correlation is a set of points on a graph that are loosely set around the line of best fit. The line will be positive rising up from left to right. A weak correlation can vary a lot as long as you can decipher which direction the data tends towards you have a correlation. If the points are close to the line of best fit you have a strong correlation and with a set of points perfectly lined up is perfect correlation. All three types can positive negative or perfect.
When r is close to +1 the variables have a positive correlation between them; as the x-values increase, the corresponding y-values increase. There is also a strong linear correlation or relationship between the variables, when the value of r is close to +1.
Isobars are lines on a weather map connecting points of equal atmospheric pressure. When isobars are close together, it indicates a large pressure gradient, leading to strong winds and unsettled weather conditions, such as storms or high winds.
No. If the correlation coefficient is close to 1 or -1, then the two variables have a high degree of statistical linear correlation. See the related link, particularly the graphs which illustrate correlation.
If by positive you mean that an increase in the independent variable is accompanied by an increase in the dependent variable then this will be indicated by a correlation close to one. What is considered 'close to one' depends on the field of study. In some fields where it can be quite difficult to establish relationships between variables a correlation of, say, 0.35 might be considered important, provided of course that it has been shown to be statistically significant.