answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: When can z distribution be used?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Why you use z distribution?

A z distribution allows you to standardize different scales for comparison.


What kind of distribution is a standard z distribution?

It is the normalised Gaussian distribution. To speak of a 'standard z' distribution is somewhat redundant because a z-score is already standardised. A z-score follows a normal or Gaussian distribution with a mean of zero and a standard deviation of one. It's these specific parameters (this mean and standard deviation) that are considered 'standard'. Speaking of a z-score implies a standard normal distribution. This is important because the shape of the normal distribution remains the same no matter what the mean or standard deviation are. As a consequence, tables of probabilities and other kinds of data can be calculated for the standard normal and then used for other variations of the distribution.


What is the principle behind the Z score table?

The z-score table is the cumulative distribution for the Standard Normal Distribution. In real life very many random variables can be modelled, at least approximately, by the Normal (or Gaussian) distribution. It will have its own mean and variance but the Z transform converts it into a standard Normal distribution (mean = 0, variance = 1). The Z-distribution is then used to make statistical inferences about the data. However, there is no simple analytical method to calculate the values of the distribution function. So, it has been done and tabulated for easy reference.


How is the t distribution similar to the standard z distribution?

Z is the standard normal distribution. T is the standard normal distribution revised to reflect the results of sampling. This is the first step in targeted sales developed through distribution trends.


What is the difference between t test and z test?

Whereas a t-test is used for n30, where n=sample size. n < 30 or n > 30 is not entirely arbitrary; it is intended to indicate that n must be sufficiently large to use the normal distribution. In some cases, n must be greater than 50. Note, both the t-test and the z-test can only be used if the distribution from which the sample is being drawn is a normal distribution. A z-test can be used even if the distribution is not normal (but is not severely skewed) if n>30, in which case, we can safely assume that the distribution is normal.

Related questions

Why you use z distribution?

A z distribution allows you to standardize different scales for comparison.


What is the distribution of absolute values of a random normal variable?

It is the so-called "half-normal distribution." Specifically, let X be a standard normal variate with cumulative distribution function F(z). Then its cumulative distribution function G(z) is given by Prob(|X| < z) = Prob(-z < X < z) = Prob(X < z) - Prob(X < -z) = F(z) - F(-z). Its probability distribution function g(z), z >= 0, therefore equals g(z) = Derivative of (F(z) - F(-z)) = f(z) + f(-z) {by the Chain Rule} = 2f(z) because of the symmetry of f with respect to zero. In other words, the probability distribution function is zero for negative values (they cannot be absolute values of anything) and otherwise is exactly twice the distribution of the standard normal.


What kind of distribution is a standard z distribution?

It is the normalised Gaussian distribution. To speak of a 'standard z' distribution is somewhat redundant because a z-score is already standardised. A z-score follows a normal or Gaussian distribution with a mean of zero and a standard deviation of one. It's these specific parameters (this mean and standard deviation) that are considered 'standard'. Speaking of a z-score implies a standard normal distribution. This is important because the shape of the normal distribution remains the same no matter what the mean or standard deviation are. As a consequence, tables of probabilities and other kinds of data can be calculated for the standard normal and then used for other variations of the distribution.


What percentage of a normal distribution is located in the tail beyond a z-score of z - 1.20?

11.51% of the distribution.


What is the principle behind the Z score table?

The z-score table is the cumulative distribution for the Standard Normal Distribution. In real life very many random variables can be modelled, at least approximately, by the Normal (or Gaussian) distribution. It will have its own mean and variance but the Z transform converts it into a standard Normal distribution (mean = 0, variance = 1). The Z-distribution is then used to make statistical inferences about the data. However, there is no simple analytical method to calculate the values of the distribution function. So, it has been done and tabulated for easy reference.


What is the z value for a normal distribution?

If a random variable X has a Normal distribution with mean m and standard deviation s, then z = (X - m)/s has a Standard Normal distribution. That is, Z has a Normal distribution with mean 0 and standard deviation 1. Probabilities for a general Normal distribution are extremely difficult to obtain but values for the Standard Normal have been calculated numerically and are widely tabulated. The z-transformation is, therefore, used to evaluate probabilities for Normally distributed random variables.


What proportion of a normal distribution falls between z 1.16 and z 1.16?

0% of a normal (of any) distribution falls between z 1.16 and z 1.16. 1.16 - 1.16 = 0.


How is the t distribution similar to the standard z distribution?

Z is the standard normal distribution. T is the standard normal distribution revised to reflect the results of sampling. This is the first step in targeted sales developed through distribution trends.


Find the z-score for which 92 percent of the distribution's area lies between -z and z?

z = 1.75


What is the difference between t test and z test?

Whereas a t-test is used for n30, where n=sample size. n < 30 or n > 30 is not entirely arbitrary; it is intended to indicate that n must be sufficiently large to use the normal distribution. In some cases, n must be greater than 50. Note, both the t-test and the z-test can only be used if the distribution from which the sample is being drawn is a normal distribution. A z-test can be used even if the distribution is not normal (but is not severely skewed) if n>30, in which case, we can safely assume that the distribution is normal.


What is a z-score used for?

The z-score is used to convert a variable with a Gaussian [Normal] distribution with mean m and standard error s to a variable with a standard normal distribution. Since the latter is tabulated, the probability of an outcome as extreme or more compared to the one observed is easily obtained.


What are the z-score boundaries for the middle of 50 percent of the distribution?

50 * * * * * z = -0.67449 to z = +0.67449