Proving this is simple. First, you prove that G has a spanning tree, it is connected, which is pretty obvious - a spanning tree itself is already a connected graph on the vertex set V(G), thus G which contains it as a spanning sub graph is obviously also connected. Second, you prove that if G is connected, it has a spanning tree. If G is a tree itself, then it must "contain" a spanning tree. If G is connected and not a tree, then it must have at least one cycle. I don't know if you know this or not, but there is a theorem stating that an edge is a cut-edge if and only if it is on no cycle (a cut-edge is an edge such that if you take it out, the graph becomes disconnected). Thus, you can just keep taking out edges from cycles in G until all that is left are cut-gees. Since you did not take out any cut-edges, the graph is still connected; since all that is left are cut-edges, there are no cycles. A connected graph with no cycles is a tree. Thus, G contains a spanning tree. Therefore, a graph G is connected if and only if it has a spanning tree!
As the slope get closer to zero, the graph becomes close to horizontal.
A tree in which one vertex called the root, is distinguished from all the others is called a rooted tree.
As the slope gets bigger the graph becomes closer to vertical - from bottom left to top right.
bar graph, double bar graph, line graph, and picto graph
Tree (since tree is connected acyclic graph)
true
No, not every tree is a bipartite graph. A tree is a bipartite graph if and only if it is a path graph with an even number of nodes.
A tree is a connected graph in which only 1 path exist between any two vertices of the graph i.e. if the graph has no cycles. A spanning tree of a connected graph G is a tree which includes all the vertices of the graph G.There can be more than one spanning tree for a connected graph G.
Every tree is a connected directed acylic graph.
Proving this is simple. First, you prove that G has a spanning tree, it is connected, which is pretty obvious - a spanning tree itself is already a connected graph on the vertex set V(G), thus G which contains it as a spanning sub graph is obviously also connected. Second, you prove that if G is connected, it has a spanning tree. If G is a tree itself, then it must "contain" a spanning tree. If G is connected and not a tree, then it must have at least one cycle. I don't know if you know this or not, but there is a theorem stating that an edge is a cut-edge if and only if it is on no cycle (a cut-edge is an edge such that if you take it out, the graph becomes disconnected). Thus, you can just keep taking out edges from cycles in G until all that is left are cut-gees. Since you did not take out any cut-edges, the graph is still connected; since all that is left are cut-edges, there are no cycles. A connected graph with no cycles is a tree. Thus, G contains a spanning tree. Therefore, a graph G is connected if and only if it has a spanning tree!
Proving this is simple. First, you prove that G has a spanning tree, it is connected, which is pretty obvious - a spanning tree itself is already a connected graph on the vertex set V(G), thus G which contains it as a spanning sub graph is obviously also connected. Second, you prove that if G is connected, it has a spanning tree. If G is a tree itself, then it must "contain" a spanning tree. If G is connected and not a tree, then it must have at least one cycle. I don't know if you know this or not, but there is a theorem stating that an edge is a cut-edge if and only if it is on no cycle (a cut-edge is an edge such that if you take it out, the graph becomes disconnected). Thus, you can just keep taking out edges from cycles in G until all that is left are cut-gees. Since you did not take out any cut-edges, the graph is still connected; since all that is left are cut-edges, there are no cycles. A connected graph with no cycles is a tree. Thus, G contains a spanning tree. Therefore, a graph G is connected if and only if it has a spanning tree!
Yes. A graph is bipartite if it contains no odd cycles. Since a tree contains no cycles at all, it is bipartite.
Tree is directed, cycle-less, connected graph.
A spanning tree is a tree associated with a network. All the nodes of the graph appear on the tree once. A minimum spanning tree is a spanning tree organized so that the total edge weight between nodes is minimized.
it was a seed in starting ,after few days it becomes plant then it becomes tree due to growing age it becomes big tree in age 64
it becomes a muchore tree