RHS congruency, or, right angle, hypotenuse and corresponding side.
true
I assume "throemand" is your fail at spelling "theorem and".The theorem states that if two angles and the included side of one triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.
That's not a postulate. It's a theorem. And you have stated it.
First of all, it's a theorem, not a postulate. It says: Two triangles are congruent if they have two angles and the included side of one equal respectively to two angles and the included side of the other.
RHS congruency, or, right angle, hypotenuse and corresponding side.
The correct answer is the AAS theorem
true
HL congruence theorem
sssThere are five methods for proving the congruence of triangles. In SSS, you prove that all three sides of two triangles are congruent to each other. In SAS, if two sides of the triangles and the angle between them are congruent, then the triangles are congruent. In ASA, if two angles of the triangles and the side between them are congruent, then the triangles are congruent. In AAS, if two angles and one of the non-included sides of two triangles are congruent, then the triangles are congruent. In HL, which only applies to right triangles, if the hypotenuse and one leg of the two triangles are congruent, then the triangles are congruent.
It is a theorem, not a postulate, since it is possible to prove it. If two angles and a side of one triangle are congruent to the corresponding angles and side of another triangle then the two triangles are congruent.
I assume "throemand" is your fail at spelling "theorem and".The theorem states that if two angles and the included side of one triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.
That's not a postulate. It's a theorem. And you have stated it.
The correct answer is the AAS theorem
Pythagorean theorem
First of all, it's a theorem, not a postulate. It says: Two triangles are congruent if they have two angles and the included side of one equal respectively to two angles and the included side of the other.
The four congruence theorem for right triangles are:- LL Congruence Theorem --> If the two legs of a right triangle is congruent to the corresponding two legs of another right triangle, then the triangles are congruent.- LA Congruence Theorem --> If a leg and an acute angle of a right triangles is congruent to the corresponding leg and acute angle of another right triangle, then the triangles are congruent.- HA Congruence Theorem --> If the hypotenuse and an acute angle of a right triangle is congruent to the corresponding hypotenuse and acute angle of another triangle, then the triangles are congruent.- HL Congruence Theorem --> If the hypotenuse and a leg of a right triangle is congruent to the corresponding hypotenuse and leg of another right triangle, then the triangles are congruent.