No. The variance of any distribution is the sum of the squares of the deviation from the mean. Since the square of the deviation is essentially the square of the absolute value of the deviation, that means the variance is always positive, be the distribution normal, poisson, or other.
The sample mean is distributed with the same mean as the popualtion mean. If the popolation variance is s2 then the sample mean has a variance is s2/n. As n increases, the distribution of the sample mean gets closer to a Gaussian - ie Normal - distribution. This is the basis of the Central Limit Theorem which is important for hypothesis testing.
Yes. Normal (or Gaussian) distribution are parametric distributions and they are defined by two parameters: the mean and the variance (square of standard deviation). Each pair of these parameters gives rise to a different normal distribution. However, they can all be "re-parametrised" to the standard normal distribution using z-transformations. The standard normal distribution has mean 0 and variance 1.
The reason the standard deviation of a distribution of means is smaller than the standard deviation of the population from which it was derived is actually quite logical. Keep in mind that standard deviation is the square root of variance. Variance is quite simply an expression of the variation among values in the population. Each of the means within the distribution of means is comprised of a sample of values taken randomly from the population. While it is possible for a random sample of multiple values to have come from one extreme or the other of the population distribution, it is unlikely. Generally, each sample will consist of some values on the lower end of the distribution, some from the higher end, and most from near the middle. In most cases, the values (both extremes and middle values) within each sample will balance out and average out to somewhere toward the middle of the population distribution. So the mean of each sample is likely to be close to the mean of the population and unlikely to be extreme in either direction. Because the majority of the means in a distribution of means will fall closer to the population mean than many of the individual values in the population, there is less variation among the distribution of means than among individual values in the population from which it was derived. Because there is less variation, the variance is lower, and thus, the square root of the variance - the standard deviation of the distribution of means - is less than the standard deviation of the population from which it was derived.
Adverse variances means unfavourable variance which is actual expenses are more than budgted variance.
Variance
No. The variance of any distribution is the sum of the squares of the deviation from the mean. Since the square of the deviation is essentially the square of the absolute value of the deviation, that means the variance is always positive, be the distribution normal, poisson, or other.
The distribution will center towards hetrotrophs and thus dominant phenotypes. The distribution approaches all dominant phenotypes
A continuous variation of phenotypes is common with polygenic inheritance, often resulting in a bell-shaped curve known as a normal distribution. This means that individuals will exhibit a range of phenotypes with no clear-cut categories.
The sample mean is distributed with the same mean as the popualtion mean. If the popolation variance is s2 then the sample mean has a variance is s2/n. As n increases, the distribution of the sample mean gets closer to a Gaussian - ie Normal - distribution. This is the basis of the Central Limit Theorem which is important for hypothesis testing.
lowest
Yes. Normal (or Gaussian) distribution are parametric distributions and they are defined by two parameters: the mean and the variance (square of standard deviation). Each pair of these parameters gives rise to a different normal distribution. However, they can all be "re-parametrised" to the standard normal distribution using z-transformations. The standard normal distribution has mean 0 and variance 1.
The reason the standard deviation of a distribution of means is smaller than the standard deviation of the population from which it was derived is actually quite logical. Keep in mind that standard deviation is the square root of variance. Variance is quite simply an expression of the variation among values in the population. Each of the means within the distribution of means is comprised of a sample of values taken randomly from the population. While it is possible for a random sample of multiple values to have come from one extreme or the other of the population distribution, it is unlikely. Generally, each sample will consist of some values on the lower end of the distribution, some from the higher end, and most from near the middle. In most cases, the values (both extremes and middle values) within each sample will balance out and average out to somewhere toward the middle of the population distribution. So the mean of each sample is likely to be close to the mean of the population and unlikely to be extreme in either direction. Because the majority of the means in a distribution of means will fall closer to the population mean than many of the individual values in the population, there is less variation among the distribution of means than among individual values in the population from which it was derived. Because there is less variation, the variance is lower, and thus, the square root of the variance - the standard deviation of the distribution of means - is less than the standard deviation of the population from which it was derived.
Adverse variances means unfavourable variance which is actual expenses are more than budgted variance.
Analysis of Variance (ANOVA) compares 3 or more means. The t-test would only compare 2 means.
It means that the variance remains the same across the range of values of the variable.
It is a result of the Central Limit Theorem.