answersLogoWhite

0

X Forza E X Amore was created in 1993.

User Avatar

Wiki User

10y ago

Still curious? Ask our experts.

Chat with our AI personalities

ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
BeauBeau
You're doing better than you think!
Chat with Beau
ReneRene
Change my mind. I dare you.
Chat with Rene

Add your answer:

Earn +20 pts
Q: When was X Forza E X Amore created?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

How do you Derive variance formula?

var(x) = E[(x - E(x))2] = E[(x - E(x)) (x - E(x))] <-------------Expand into brackets = E[x2 - xE(x) - xE(x) + (E(x))2] <---Simplify = E[x2 - 2xE(x) + (E(x))2] = E(x2) + E[-2xE(x)] + E[(E(x))2] = E(x2) - 2E[xE(x)] + E[(E(x))2] <---Bring (-2) constant outside = E(x2) - 2E(x)E[E(x)] + E[(E(x))2] <--- E[xE(x)] = E(x)E(x) = E(x2) - 2E(x)E(x) + [E(x)]2 <----------E[E(x)] = E(x) = E(x2) - 2[E(x)]2 + [E(x)]2 var(x) = E(x2) - [E(x)]2


What is the integral of sin x Times Square x times exp x?

Assume the expression is: ∫ sin(x)x²e^x dx Then: Take the integral: integral e^x x^2 sin(x) dx For the integrand e^x x^2 sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x^2, dg = e^x sin(x) dx, df = 2 x dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x (sin(x)-cos(x)) dx Expanding the integrand e^x x (sin(x)-cos(x)) gives e^x x sin(x)-e^x x cos(x): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral (e^x x sin(x)-e^x x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x x sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x sin(x) dx, df = dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral e^x (sin(x)-cos(x)) dx Expanding the integrand e^x (sin(x)-cos(x)) gives e^x sin(x)-e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral (e^x sin(x)-e^x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx+ integral e^x x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)-1/2 e^x x sin(x)-1/4 (e^x cos(x))+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)-1/2 (e^x cos(x))+1/2 e^x x cos(x)+ integral e^x x cos(x) dx For the integrand e^x x cos(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x cos(x) dx, df = dx, g = 1/2 e^x (sin(x)+cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x (sin(x)+cos(x)) dx Expanding the integrand e^x (sin(x)+cos(x)) gives e^x sin(x)+e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral (e^x sin(x)+e^x cos(x)) dx Integrate the sum term by term: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)+e^x x cos(x)+-3/4 e^x cos(x)-1/2 integral e^x sin(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x sin(x)+e^x x cos(x)-1/2 e^x cos(x)+constant Which is equal to: Answer: | | = 1/2 e^x ((x^2-1) sin(x)-(x-1)^2 cos(x))+constant


Integral of xex dx?

let u = x du=dx let dv= e^x v=e^x ∫ xe^(x)dx = xe^x - ∫ e^(x)dx = xe^x - e^x = e^x ( x-1 ) + c


How do you integrate xe power x?

Use integration by parts. integral of xe^xdx =xe^x-integral of e^xdx. This is xe^x-e^x +C. Check by differentiating. We get x(e^x)+e^x(1)-e^x, which equals xe^x. That's it!


What is the antiderivative of e to the power of one divided by x?

1/ln(x)*e^(1/x) if you differentiate e^(1/x), you will get ln(x)*e^(1/x). times this by 1/ln(x) and you get you original equation. Peace